Share:
Share this content in WeChat
X
Review
Research progress in predicting gastric cancer neoadjuvant chemotherapy based on CT, MRI, and related technologies
LIU Xinyi  CAO Yuntai  HOU Yuyin  ZHOU Boqi  YANG Airu 

Cite this article as: LIU X Y, CAO Y T, HOU Y Y, et al. Research progress in predicting gastric cancer neoadjuvant chemotherapy based on CT, MRI, and related technologies[J]. Chin J Magn Reson Imaging, 2025, 16(6): 207-213. DOI:10.12015/issn.1674-8034.2025.06.032.


[Abstract] Gastric cancer, a prevalent malignant tumor, poses a severe threat to public health. Effective neoadjuvant chemotherapy (NAC) can enhance the survival rate of patients with locally advanced gastric cancer (LAGC). In the era of precision medicine, precise evaluation of NAC for gastric cancer is crucial for optimizing treatment. However, traditional postoperative pathological assessment is invasive and lags in guiding individualized treatment and precision medicine, failing to meet preoperative diagnostic and efficacy-prediction needs. As medical imaging technology and artificial intelligence algorithms advance, imaging methods can noninvasively predict the pathological response to NAC and assess its preoperative effectiveness. This helps prolong survival, minimize damage and toxicity, and facilitate individualized treatment. Yet, current imaging assessments lack standardization and quantification, limiting individualized treatment decisions. More standardized research is needed to boost the accuracy of NAC efficacy evaluation. This paper focuses on the latest progress of CT, MRI, related techniques combined with AI algorithms, and the application of CT and MRI in evaluating the pathological response to gastric cancer NAC. It also compares the advantages and disadvantages of CT and MRI and other technologies, and discusses the application prospects of CT and MRI in this field. The aim is to enhance the understanding of imaging- based assessment of gastric cancer NAC efficacy and provide a reference for establishing a standardized and quantitative imaging evaluation system.
[Keywords] gastric carcinoma;neoadjuvant chemotherapy;magnetic resonance imaging;computed tomography

LIU Xinyi   CAO Yuntai*   HOU Yuyin   ZHOU Boqi   YANG Airu  

Medical Imaging Center, Affiliated Hospital of Qinghai University, Xining 810001, China

Corresponding author: CAO Y T, E-mail: caoyt18@lzu.edu.cn

Conflicts of interest   None.

Received  2025-03-24
Accepted  2025-05-20
DOI: 10.12015/issn.1674-8034.2025.06.032
Cite this article as: LIU X Y, CAO Y T, HOU Y Y, et al. Research progress in predicting gastric cancer neoadjuvant chemotherapy based on CT, MRI, and related technologies[J]. Chin J Magn Reson Imaging, 2025, 16(6): 207-213. DOI:10.12015/issn.1674-8034.2025.06.032.

[1]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[2]
ZHAO Y Z, LI D Y, ZHUANG J, et al. Comprehensive multi-omics analysis of resectable locally advanced gastric cancer: Assessing response to neoadjuvant camrelizumab and chemotherapy in a single-center, open-label, single-arm phase Ⅱ trial[J/OL]. Clin Transl Med, 2024, 14(5): e1674 [2025-03-10]. https://pubmed.ncbi.nlm.nih.gov/38685486/. DOI: 10.1002/ctm2.1674.
[3]
DENG J, ZHANG W J, XU M, et al. Imaging advances in efficacy assessment of gastric cancer neoadjuvant chemotherapy[J]. Abdom Radiol (NY), 2023, 48(12): 3661-3676. DOI: 10.1007/s00261-023-04046-1.
[4]
HU J W, YANG Y P, MA Y C, et al. Survival benefits from neoadjuvant treatment in gastric cancer: a systematic review and meta-analysis[J/OL]. Syst Rev, 2022, 11(1): 136 [2025-03-10]. https://pubmed.ncbi.nlm.nih.gov/35788246/. DOI: 10.1186/s13643-022-02001-7.
[5]
CHEN Y F, MI Y L, TAN S, et al. CEA-induced PI3K/AKT pathway activation through the binding of CEA to KRT1 contributes to oxaliplatin resistance in gastric cancer[J/OL]. Drug Resist Updat, 2025, 78: 101179 [2025-03-10]. https://pubmed.ncbi.nlm.nih.gov/39644827/. DOI: 10.1016/j.drup.2024.101179.
[6]
ERDOGAN A S O, SIMMER F, NAGTEGAAL I D. Tumor deposits should not be placed in the M category of TNM: a comparative survival analysis using SEER data[J]. Int J Cancer, 2025, 156(2): 274-279. DOI: 10.1002/ijc.35165.
[7]
ZHANG L, ZHENG H, JIANG S T, et al. Worldwide research trends on tumor burden and immunotherapy: a bibliometric analysis[J]. Int J Surg, 2024, 110(3): 1699-1710. DOI: 10.1097/JS9.0000000000001022.
[8]
WYATT A W, LITIERE S, BIDARD F C, et al. Plasma ctDNA as a treatment response biomarker in metastatic cancers: evaluation by the RECIST working group[J]. Clin Cancer Res, 2024, 30(22): 5034-5041. DOI: 10.1158/1078-0432.CCR-24-1883.
[9]
WEI M J. Clinical study based on CT extracellular volume fraction to predict the efficacy of neoadjuvant chemotherapy for gastric cancer[D]. Hohhot: Inner Mongolia Medical University, 2023. DOI: 10.27231/d.cnki.gnmyc.2023.000056.
[10]
MOTZER R J, JONASCH E, AGARWAL N, et al. NCCN guidelines® insights: kidney cancer, version 2.2024[J]. J Natl Compr Canc Netw, 2024, 22(1): 4-16. DOI: 10.6004/jnccn.2024.0008.
[11]
MAZZEI M A, BAGNACCI G, GENTILI F, et al. Gastric cancer maximum tumour diameter reduction rate at CT examination as a radiological index for predicting histopathological regression after neoadjuvant treatment: a multicentre GIRCG study[J/OL]. Gastroenterol Res Pract, 2018, 2018: 1794524 [2025-03-10]. https://pubmed.ncbi.nlm.nih.gov/29736166/. DOI: 10.1155/2018/1794524.
[12]
WANG Z L, LI Y L, LI X T, et al. Role of CT in the prediction of pathological complete response in gastric cancer after neoadjuvant chemotherapy[J]. Abdom Radiol (NY), 2021, 46(7): 3011-3018. DOI: 10.1007/s00261-021-02967-3.
[13]
CHEN C, DONG H, SHOU C H, et al. The correlation between computed tomography volumetry and prognosis of advanced gastric cancer treated with neoadjuvant chemotherapy[J]. Cancer Manag Res, 2020, 12: 759-768. DOI: 10.2147/CMAR.S231636.
[14]
LI Z X, LI X Y, GUAN S, et al. Correlation analysis between tumor deposit and clinicopathologic characteristics and prognosis of gastric cancer: a multicenter retrospective study[J]. Ann Surg Oncol, 2024, 31(9): 5984-5996. DOI: 10.1245/s10434-024-15508-1.
[15]
KIM D H, MIN E J, KIM B, et al. RECIST 1.1, mRECIST, and Choi criteria for evaluating treatment response and survival outcomes in hepatocellular carcinoma patients treated with atezolizumab plus bevacizumab[J]. Eur Radiol, 2025, 35(2): 684-694. DOI: 10.1007/s00330-024-10986-z.
[16]
ZHAO Q, LI Y, WANG L, et al. Application of MSCT in evaluating the effect of neoadjuvant chemotherapy in advanced gastric cancer[J]. Chin J Cancer Prev Treat, 2019, 26(1): 43-46. DOI: 10.16073/j.cnki.cjcpt.2019.01.008.
[17]
WU K S, LI K Y, GUI Y, et al. Development of Logistic regression model based on baseline CT to predict neoadjuvant chemotherapy response in advanced gastric cancer[J]. J N Sichuan Med Coll, 2025, 40(2): 156-159. DOI: 10.3969/j.issn.1005-3697.2025.02.004.
[18]
LYU L L, XU P. Hepatic CT perfusion in budd-chiari syndrome before and after intervention[J/OL]. Radiology, 2024, 311(1): e232426 [2025-03-10]. https://pubmed.ncbi.nlm.nih.gov/38625011/. DOI: 10.1148/radiol.232426.
[19]
HANSEN M L, FALLENTIN E, LAURIDSEN C, et al. Computed tomography (CT) perfusion as an early predictive marker for treatment response to neoadjuvant chemotherapy in gastroesophageal junction cancer and gastric cancer: a prospective study[J/OL]. PLoS One, 2014, 9(5): e97605 [2025-03-10]. https://pubmed.ncbi.nlm.nih.gov/24845062/. DOI: 10.1371/journal.pone.0097605.
[20]
SUN Z Q, CHENG X F, GE Y X, et al. An application study of low-dose computed tomography perfusion imaging for evaluation of the efficacy of neoadjuvant chemotherapy for advanced gastric adenocarcinoma[J]. Gastric Cancer, 2018, 21(3): 413-420. DOI: 10.1007/s10120-017-0763-0.
[21]
XU M, ZHANG W J, DENG J, et al. Value of CT-based arterial enhancement fraction in predicting the response of neoadjuvant chemotherapy combined with immunotherapy in gastric cancer[J]. Chin J CT MRI, 2024, 22(10): 121-123. DOI: 10.3969/j.issn.1672-5131.2024.10.039.
[22]
OZAKI K, OHTANI T, ISHIDA S, et al. Extracellular volume fraction obtained by dual-energy CT depicting the etiological differences of liver fibrosis[J]. Abdom Radiol (NY), 2023, 48(6): 1975-1986. DOI: 10.1007/s00261-023-03873-6.
[23]
FUKUKURA Y, KUMAGAE Y, HIGASHI R, et al. Extracellular volume fraction determined by equilibrium contrast-enhanced dual-energy CT as a prognostic factor in patients with stage IV pancreatic ductal adenocarcinoma[J]. Eur Radiol, 2020, 30(3): 1679-1689. DOI: 10.1007/s00330-019-06517-w.
[24]
TATSUGAMI F, HIGAKI T, NAKAMURA Y, et al. Dual-energy CT: minimal essentials for radiologists[J]. Jpn J Radiol, 2022, 40(6): 547-559. DOI: 10.1007/s11604-021-01233-2.
[25]
DU W, YU M J, LUO X J, et al. Application value of spectral CT imaging in quantitative analysis of early lung adenocarcinoma[J/OL]. J Oncol, 2022, 2022: 2944473 [2025-03-10]. https://pubmed.ncbi.nlm.nih.gov/35342413/. DOI: 10.1155/2022/2944473.
[26]
ZHANG Y, CHEN J F, YUAN F, et al. Prognostic role of iodine values for gastric cancer after neoadjuvant chemotherapy: a strong independent prognostic factor[J]. Diagn Interv Radiol, 2022, 28(5): 388-395. DOI: 10.5152/dir.2022.201007.
[27]
GAO X Y, ZHANG Y, YUAN F, et al. Locally advanced gastric cancer: total iodine uptake to predict the response of primary lesion to neoadjuvant chemotherapy[J]. J Cancer Res Clin Oncol, 2018, 144(11): 2207-2218. DOI: 10.1007/s00432-018-2728-z.
[28]
HE Y H, WU J Q, QIU Q X, et al. Value of spectral CT multiparametric imaging in the evaluation of the efficacy of preoperative neoadjuvant chemotherapy in progressive gastric cancer[J]. J Pract Med Imag, 2024, 25(4): 249-252. DOI: 10.16106/j.cnki.cn14-1281/r.2024.04.002.
[29]
WANG J B, QIU Q Z, ZHENG Q L, et al. Tumor immunophenotyping-derived signature identifies prognosis and neoadjuvant immunotherapeutic responsiveness in gastric cancer[J/OL]. Adv Sci (Weinh), 2023, 10(15): e2207417 [2025-03-10]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10214263/. DOI: 10.1002/advs.202207417.
[30]
TONG H J. Comparative analysis of DCE-MRI quantitative parameters of neoadjuvant chemotherapy for advanced gastric cancer with different grades[J]. J Med Theory Pract, 2022, 35(20): 3531-3533. DOI: 10.19381/j.issn.1001-7585.2022.20.045.
[31]
LI J, XU S N, WANG Y, et al. Spectral CT vs. diffusion-weighted imaging for the quantitative prediction of pathologic response to neoadjuvant chemotherapy in locally advanced gastric cancer[J]. Eur Radiol, 2024, 34(9): 6193-6204. DOI: 10.1007/s00330-024-10642-6.
[32]
LI J, YAN L L, ZHANG H K, et al. Dynamic contrast-enhanced and diffusion-weighted MR imaging in early prediction of pathologic response to neoadjuvant chemotherapy in locally advanced gastric cancer[J]. Abdom Radiol (NY), 2022, 47(10): 3394-3405. DOI: 10.1007/s00261-022-03623-0.
[33]
FEDERAU C. Measuring perfusion: intravoxel incoherent motion MR imaging[J]. Magn Reson Imaging Clin N Am, 2021, 29(2): 233-242. DOI: 10.1016/j.mric.2021.01.003.
[34]
SHEN M J, LIN X Y, YANG C L, et al. Potential predictive value of IVIM MR for xerostomia in nasopharyngeal carcinoma[J/OL]. Radiother Oncol, 2024, 197: 110323 [2025-03-10]. https://pubmed.ncbi.nlm.nih.gov/38734144/. DOI: 10.1016/j.radonc.2024.110323.
[35]
ZHU Y J, JIANG Z C, WANG B Z, et al. Quantitative dynamic-enhanced MRI and intravoxel incoherent motion diffusion-weighted imaging for prediction of the pathological response to neoadjuvant chemotherapy and the prognosis in locally advanced gastric cancer[J/OL]. Front Oncol, 2022, 12: 841460 [2025-03-10]. https://pubmed.ncbi.nlm.nih.gov/35425711/. DOI: 10.3389/fonc.2022.841460.
[36]
FU J, TANG L, LI Z Y, et al. Diffusion kurtosis imaging in the prediction of poor responses of locally advanced gastric cancer to neoadjuvant chemotherapy[J/OL]. Eur J Radiol, 2020, 128: 108974 [2025-03-10]. https://pubmed.ncbi.nlm.nih.gov/32416553/. DOI: 10.1016/j.ejrad.2020.108974.
[37]
YOSHIKAWA T, ENDO K, MORIYAMA-KITA M, et al. Association of 18F- fluorodeoxyglucose uptake with the expression of metabolism-related molecules in papillary thyroid cancer[J]. Auris Nasus Larynx, 2024, 51(4): 696-702. DOI: 10.1016/j.anl.2024.04.008.
[38]
MI L L, ZHAO Y, ZHAO X M, et al. 18F-fluorodeoxyglucose positron emission tomography-computed tomography metabolic parameters before and after neoadjuvant chemotherapy can predict the postoperative prognosis of locally advanced gastric cancer[J]. Cancer Biother Radiopharm, 2021, 36(8): 662-671. DOI: 10.1089/cbr.2020.3942.
[39]
GÜÇ Z G, TURGUT B, AVCI A, et al. Predicting pathological response and overall survival in locally advanced gastric cancer patients undergoing neoadjuvant chemotherapy: the role of PET/computed tomography[J]. Nucl Med Commun, 2022, 43(5): 560-567. DOI: 10.1097/MNM.0000000000001534.
[40]
QIAN X F, QIN L L, JI J F, et al. The correlation between metabolic parameters of FDG positive 18F-FDG PET/CT and post neoadjuvant chemotherapy response[J]. J Clin Radiol, 2024, 43(12): 2094-2100. DOI: 10.13437/j.cnki.jcr.2024.12.009.
[41]
INCHINGOLO R, MAINO C, CANNELLA R, et al. Radiomics in colorectal cancer patients[J]. World J Gastroenterol, 2023, 29(19): 2888-2904. DOI: 10.3748/wjg.v29.i19.2888.
[42]
JIA P F, LI Y R, WANG L Y, et al. Radiomics in esophagogastric junction cancer: A scoping review of current status and advances[J/OL]. Eur J Radiol, 2024, 177: 111577 [2025-03-10]. https://pubmed.ncbi.nlm.nih.gov/38905802/. DOI: 10.1016/j.ejrad.2024.111577.
[43]
REGINELLI A, NARDONE V, GIACOBBE G, et al. Radiomics as a new frontier of imaging for cancer prognosis: a narrative review[J/OL]. Diagnostics (Basel), 2021, 11(10): 1796 [2025-03-10]. https://pubmed.ncbi.nlm.nih.gov/34679494/. DOI: 10.3390/diagnostics11101796.
[44]
CHEN J, DING Q L, WANG Z, et al. CT texture analysis in prediction of treatment response to neoadjuvant chemotherapy in patients with advanced gastric cancer[J]. J Clin Radiol, 2019, 38(11): 2100-2105. DOI: 10.13437/j.cnki.jcr.2019.11.021.
[45]
SUN K Y, HU H T, CHEN S L, et al. CT-based radiomics scores predict response to neoadjuvant chemotherapy and survival in patients with gastric cancer[J/OL]. BMC Cancer, 2020, 20(1): 468 [2025-03-10]. https://pubmed.ncbi.nlm.nih.gov/32450841/. DOI: 10.1186/s12885-020-06970-7.
[46]
XIE K, CUI Y F, ZHANG D F, et al. Pretreatment contrast-enhanced computed tomography radiomics for prediction of pathological regression following neoadjuvant chemotherapy in locally advanced gastric cancer: a preliminary multicenter study[J/OL]. Front Oncol, 2022, 11: 770758 [2025-03-10]. https://pubmed.ncbi.nlm.nih.gov/35070974/. DOI: 10.3389/fonc.2021.770758.
[47]
LI J, YIN H K, WANG Y, et al. Multiparametric MRI-based radiomics nomogram for early prediction of pathological response to neoadjuvant chemotherapy in locally advanced gastric cancer[J]. Eur Radiol, 2023, 33(4): 2746-2756. DOI: 10.1007/s00330-022-09219-y.
[48]
LI J, ZHANG H L, YIN H K, et al. Comparison of MRI and CT-based radiomics and their combination for early identification of pathological response to neoadjuvant chemotherapy in locally advanced gastric cancer[J]. J Magn Reson Imaging, 2023, 58(3): 907-923. DOI: 10.1002/jmri.28570.
[49]
JIANG X, HU Z, WANG S, et al. Deep learning for medical image-based cancer diagnosis[J/OL]. Cancers (Basel), 2023, 15(14): 3608 [2025-03-10]. https://pubmed.ncbi.nlm.nih.gov/37509272/. DOI: 10.3390/cancers15143608.
[50]
ZHANG J Y, CUI Y F, WEI K K, et al. Deep learning predicts resistance to neoadjuvant chemotherapy for locally advanced gastric cancer: a multicenter study[J]. Gastric Cancer, 2022, 25(6): 1050-1059. DOI: 10.1007/s10120-022-01328-3.
[51]
CUI Y F, ZHANG J Y, LI Z H, et al. A CT-based deep learning radiomics nomogram for predicting the response to neoadjuvant chemotherapy in patients with locally advanced gastric cancer: a multicenter cohort study[J/OL]. EClinicalMedicine, 2022, 46: 101348 [2025-03-10]. https://pubmed.ncbi.nlm.nih.gov/35340629/. DOI: 10.1016/j.eclinm.2022.101348.
[52]
ZHANG J J, ZHANG Q, ZHAO B, et al. Deep learning nomogram for predicting neoadjuvant chemotherapy response in locally advanced gastric cancer patients[J]. Abdom Radiol (NY), 2024, 49(11): 3780-3796. DOI: 10.1007/s00261-024-04331-7.

PREV Research progress of magnetic resonance elastography in pancreatic diseases
NEXT Research progress of artificial intelligence in automatic segmentation and visualization of gastrointestinal tumor images
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn