Share:
Share this content in WeChat
X
Review
Progress of multimodal MRI in evaluating biomarkers related to treatment and prognosis of cervical cancer
DONG Deshuo  LIU Ailian 

Cite this article as: DONG D S, LIU A L. Progress of multimodal MRI in evaluating biomarkers related to treatment and prognosis of cervical cancer[J]. Chin J Magn Reson Imaging, 2025, 16(6): 220-227. DOI:10.12015/issn.1674-8034.2025.06.034.


[Abstract] Cervical cancer, recognized as the fifth most prevalent malignant tumor among women in China, poses a significant threat to women's health. Numerous gene and protein-related biomarkers play crucial roles in the occurrence and progression of cervical cancer, involving processes such as angiogenesis, cell proliferation, and immune evasion. Functional and quantitative MRI techniques can provide multi-level quantitative data, including hemodynamic changes, tissue microstructural characteristics, and the tumor hypoxic microenvironment, thereby offering a visual foundation for a deeper understanding of the pathophysiological and metabolic characteristics of cervical cancer. However, current research on traditional imaging and radiomics in predicting cervical cancer biomarkers remains relatively fragmented and lacks a systematic overview. This review aims to summarize the application of multimodal MRI in relation to biomarkers pertinent to the treatment and prognosis of cervical cancer, analyze its clinical application value and limitations, and anticipate future high-tech research directions that require further exploration, with the hope of guiding the clinical use of non-invasive imaging techniques to predict disease progression and treatment effects more accurately, ultimately achieving individualized treatment.
[Keywords] cervical cancer;magnetic resonance imaging;radiomics;biomarkers;precision medicine

DONG Deshuo   LIU Ailian*  

Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

Corresponding author: LIU A L, E-mail: cjr.liuailian@vip.163.com

Conflicts of interest   None.

Received  2025-03-05
Accepted  2025-05-10
DOI: 10.12015/issn.1674-8034.2025.06.034
Cite this article as: DONG D S, LIU A L. Progress of multimodal MRI in evaluating biomarkers related to treatment and prognosis of cervical cancer[J]. Chin J Magn Reson Imaging, 2025, 16(6): 220-227. DOI:10.12015/issn.1674-8034.2025.06.034.

[1]
SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024[J]. CA A Cancer J Clin, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
[2]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[3]
HAN B F, ZHENG R S, ZENG H M, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53. DOI: 10.1016/j.jncc.2024.01.006.
[4]
MILLS A M, PINTO A. The role of predictive and prognostic biomarkers in lower female genital tract pathology: PD-L1, MMR, HER2, p16, p53, and beyond[J]. Adv Anat Pathol, 2025, 32(1): 30-43. DOI: 10.1097/PAP.0000000000000458.
[5]
ZHANG Q H, LIU A L. Review on the application of MRI functional and quantitative imaging techniques in the diagnosis and treatment of cervical cancer[J]. Chin J Magn Reson Imag, 2024, 15(8): 1-11, 24. DOI: 10.12015/issn.1674-8034.2024.08.001.
[6]
ZHAO X, WANG X Y, ZHANG B H, et al. Classifying early stages of cervical cancer with MRI-based radiomics[J]. Magn Reson Imaging, 2022, 89: 70-76. DOI: 10.1016/j.mri.2022.03.002.
[7]
REN J, LI Y, LIU X Y, et al. Diagnostic performance of ADC values and MRI-based radiomics analysis for detecting lymph node metastasis in patients with cervical cancer: A systematic review and meta-analysis[J/OL]. Eur J Radiol, 2022, 156: 110504 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/36108474/. DOI: 10.1016/j.ejrad.2022.110504.
[8]
WAGNER-LARSEN K S, HODNELAND E, FASMER K E, et al. MRI-based radiomic signatures for pretreatment prognostication in cervical cancer[J]. Cancer Med, 2023, 12(20): 20251-20265. DOI: 10.1002/cam4.6526.
[9]
RUSSO L, GUI B, MICCÒ M, et al. The role of MRI in cervical cancer > 2 cm (FIGO stage IB2-IIA1) conservatively treated with neoadjuvant chemotherapy followed by conization: a pilot study[J]. Radiol Med, 2021, 126(8): 1055-1063. DOI: 10.1007/s11547-021-01377-1.
[10]
ARVIDSSON J, ERIKSSON S, JOHANSSON E, et al. Arterial occlusion duration affects the cuff-induced hyperemic response in skeletal muscle BOLD perfusion imaging as shown in young healthy subjects[J]. MAGMA, 2023, 36(6): 897-910. DOI: 10.1007/s10334-023-01105-y.
[11]
MCCABE A, MARTIN S, SHAH J, et al. T1 based oxygen-enhanced MRI in tumours; a scoping review of current research[J/OL]. Br J Radiol, 2023, 96(1146): 20220624 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/36809186/. DOI: 10.1259/bjr.20220624.
[12]
WU M H, JIANG T L, GUO M, et al. Amide proton transfer-weighted imaging and derived radiomics in the classification of adult-type diffuse gliomas[J]. Eur Radiol, 2024, 34(5): 2986-2996. DOI: 10.1007/s00330-023-10343-6.
[13]
LI X, TIAN S, MA C, et al. Multimodal MRI for estimating her-2 gene expression in endometrial cancer[J/OL]. Bioengineering (Basel), 2023, 10(12): 1399 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/38135990/. DOI: 10.3390/bioengineering10121399.
[14]
AN Q, ZHANG Q H, ZHONG L, et al. The radiomics model based on APT for preoperative prediction of cervical cancer lymphovascular space invasion[J]. Chin J Magn Reson Imag, 2024, 15(8): 31-38. DOI: 10.12015/issn.1674-8034.2024.08.005.
[15]
ZHANG Q Y, LIU J S, TIAN S F, et al. The value of amide proton transfer weighted combined with dynamic contrast-enhanced MRI in evaluating cervical cancer nerve invasion[J]. Chin J Magn Reson Imag, 2024, 15(8): 39-45. DOI: 10.12015/issn.1674-8034.2024.08.006.
[16]
WANG X J, ISHIMATSU K, LI J J, et al. APT imaging of hepatocellular carcinoma signals an effective therapeutic response in advance of tumor shrinkage[J/OL]. Hepat Oncol, 2024, 11(1): 2389031 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/39881558/. DOI: 10.1080/20450923.2024.2389031.
[17]
LI S J, LIU J, ZHANG Z X, et al. Added-value of 3D amide proton transfer MRI in assessing prognostic factors of cervical cancer: a comparative study with multiple model diffusion-weighted imaging[J]. Quant Imaging Med Surg, 2023, 13(12): 8157-8172. DOI: 10.21037/qims-23-324.
[18]
POLI S, EMARA A F, LANGE N F, et al. Interleaved trinuclear MRS for single-session investigation of carbohydrate and lipid metabolism in human liver at 7T[J/OL]. NMR Biomed, 2024, 37(8): e5123 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/38423797/. DOI: 10.1002/nbm.5123.
[19]
KÜSTNER T, QIN C, SUN C Y, et al. The intelligent imaging revolution: artificial intelligence in MRI and MRS acquisition and reconstruction[J]. MAGMA, 2024, 37(3): 329-333. DOI: 10.1007/s10334-024-01179-2.
[20]
SHAMS Z, DAI J Y, GOSSELINK M W J, et al. Interleaved whole brain 23Na-MRI and 31P-MRSI acquisitions at 7 tesla[J/OL]. NMR Biomed, 2025, 38(3): e70012 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/39956139/. DOI: 10.1002/nbm.70012.
[21]
HUANG W L, WU S F, ZHOU S, et al. Correlation analysis of MRI IVIM and microvessel density of cervical squamous cell carcinoma[J]. Chongqing Med, 2021, 50(19): 3342-3345. DOI: 10.3969/j.issn.1671-8348.2021.19.022.
[22]
HAUGE A, GAUSTAD J V, HUANG R X, et al. DCE-MRI and quantitative histology reveal enhanced vessel maturation but impaired perfusion and increased hypoxia in bevacizumab-treated cervical carcinoma[J]. Int J Radiat Oncol Biol Phys, 2019, 104(3): 666-676. DOI: 10.1016/j.ijrobp.2019.03.002.
[23]
PIŠKUR I, TOPOLOVEC Z, BAKULA M, et al. Expression of vascular endothelial growth factor-A (VEGF-A) in adenocarcinoma and squamous cell cervical cancer and its impact on disease progression: single institution experience[J/OL]. Medicina, 2023, 59(7): 1189 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/37512001/. DOI: 10.3390/medicina59071189.
[24]
ZHUANG Y, LIU K, HE Q Y, et al. Hypoxia signaling in cancer: Implications for therapeutic interventions[J/OL]. MedComm (2020), 2023, 4(1): e203 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/36703877/. DOI: 10.1002/mco2.203.
[25]
REN A L, DING N, LI Y B, et al. Study on the relationship between the features of DWIBS and angiogenesis in cervical cancer[J]. J Med Imag, 2022, 32(2): 296-299. DOI: 10.3969/j.issn.1006-9011.2022.2.yxyxxzz202202031.
[26]
LIU Y, YE Z X, SUN H R, et al. Grading of uterine cervical cancer by using the ADC difference value and its correlation with microvascular density and vascular endothelial growth factor[J]. Eur Radiol, 2013, 23(3): 757-765. DOI: 10.1007/s00330-012-2657-1.
[27]
DENG X J, LIU M L, SUN J Q, et al. Feasibility of MRI-based radiomics features for predicting lymph node metastases and VEGF expression in cervical cancer[J/OL]. Eur J Radiol, 2021, 134: 109429 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/33290975/. DOI: 10.1016/j.ejrad.2020.109429.
[28]
KRISHNAMOORTHY S, MURUGANANTHAM B, YU J R, et al. Exploring the utility of FTS as a bonafide binding partner for EGFR: a potential drug target for cervical cancer[J/OL]. Comput Biol Med, 2023, 167: 107592 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/37976824/. DOI: 10.1016/j.compbiomed.2023.107592.
[29]
SUBBIAH V, DUMBRAVA E I, JIANG Y F, et al. Dual EGFR blockade with cetuximab and erlotinib combined with anti-VEGF antibody bevacizumab in advanced solid tumors: a phase 1 dose escalation triplet combination trial[J/OL]. Exp Hematol Oncol, 2020, 9: 7 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/32337094/. DOI: 10.1186/s40164-020-00159-1.
[30]
MEYER H J, GUNDERMANN P, HÖHN A K, et al. Associations between whole tumor histogram analysis parameters derived from ADC maps and expression of EGFR, VEGF, Hif 1-alpha, Her-2 and Histone 3 in uterine cervical cancer[J]. Magn Reson Imaging, 2019, 57: 68-74. DOI: 10.1016/j.mri.2018.10.016.
[31]
MEYER H J, HAMERLA G, HÖHN A K, et al. Whole lesion histogram analysis derived from morphological MRI sequences might be able to predict EGFR- and Her2-expression in cervical cancer[J/OL]. Acad Radiol, 2019, 26(8): e208-e215 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/30318289/. DOI: 10.1016/j.acra.2018.09.008.
[32]
BIGOS K J, QUILES C G, LUNJ S, et al. Tumour response to hypoxia: understanding the hypoxic tumour microenvironment to improve treatment outcome in solid tumours[J/OL]. Front Oncol, 2024, 14: 1331355 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/38352889/. DOI: 10.3389/fonc.2024.1331355.
[33]
VIDONI C, FERRARESI A, VALLINO L, et al. Glycolysis inhibition of autophagy drives malignancy in ovarian cancer: exacerbation by IL-6 and attenuation by resveratrol[J/OL]. Int J Mol Sci, 2023, 24(2): 1723 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/36675246/. DOI: 10.3390/ijms24021723.
[34]
ZHAO K, HU M, YANG R F, et al. Decreasing expression of HIF-1α, VEGF-A, and Ki67 with efficacy of neoadjuvant therapy in locally advanced cervical cancer[J/OL]. Medicine (Baltimore), 2023, 102(20): e33820 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/37335690/. DOI: 10.1097/MD.0000000000033820.
[35]
ABUDOUKERIMU A, HASIMU A, ABUDOUKERIMU A, et al. HIF-1α regulates the progression of cervical cancer by targeting YAP/TAZ[J/OL]. J Oncol, 2022, 2022: 3814809 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/35664561/. DOI: 10.1155/2022/3814809.
[36]
LI X S, WU S D, LI D C, et al. Intravoxel incoherent motion combined with dynamic contrast-enhanced perfusion MRI of early cervical carcinoma: correlations between multimodal parameters and HIF-1α expression[J]. J Magn Reson Imaging, 2019, 50(3): 918-929. DOI: 10.1002/jmri.26604.
[37]
LIU B, GAO H, ZHOU F, et al. Dynamic contrast-enhanced magnetic resonance imaging in cervical cancer: correlation between quantitative parameters and molecular markers hypoxia-inducible factors-1-alpha, vascular endothelial growth factor, and Ki-67[J/OL]. Clin Radiol, 2024, 79(6): e826-e833 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/38582634/. DOI: 10.1016/j.crad.2024.01.039.
[38]
ZHANG L O, SUN H Z, BAI X X, et al. Correlation between tumor glucose metabolism and multiparametric functional MRI (IVIM and R2*) metrics in cervical carcinoma: Evidence from integrated 18 F-FDG PET/MR[J]. J Magn Reson Imaging, 2019, 49(6): 1704-1712. DOI: 10.1002/jmri.26557.
[39]
WALLER J, ONDERDONK B, FLOOD A, et al. The clinical utility of imaging methods used to measure hypoxia in cervical cancer[J/OL]. Br J Radiol, 2020, 93(1111): 20190640 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/32286849/. DOI: 10.1259/bjr.20190640.
[40]
POPIEL-KOPACZYK A, GRZEGRZOLKA J, PIOTROWSKA A, et al. The expression of testin, Ki-67 and p16 in cervical cancer diagnostics[J]. Curr Issues Mol Biol, 2023, 45(1): 490-500. DOI: 10.3390/cimb45010032.
[41]
LAI B J, YI Y J, YANG X J, et al. Dynamic contrast-enhanced and diffusion-weighted MRI of cervical carcinoma: Correlations with Ki-67 proliferation status[J]. Magn Reson Imaging, 2024, 112: 136-143. DOI: 10.1016/j.mri.2024.07.010.
[42]
LI C P, ZHENG M X, ZHENG X M, et al. Predictive ki-67 proliferation index of cervical squamous cell carcinoma based on IVIM-DWI combined with texture features[J/OL]. Contrast Media Mol Imaging, 2021, 2021: 8873065 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/33531882/. DOI: 10.1155/2021/8873065.
[43]
SUROV A, BORGGREFE J, HÖHN A K, et al. Associations between ADC histogram analysis values and tumor-micro milieu in uterine cervical cancer[J/OL]. Cancer Imaging, 2024, 24(1): 170 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/39707580/. DOI: 10.1186/s40644-024-00814-4.
[44]
YAN M, WEN S B, WANG X Y, et al. The value of dynamic contrast-enhanced MRI parameters and texture analysis for predicting the proliferation activity in cervical cancer patients[J]. J Pract Radiol, 2023, 39(3): 428-432. DOI: 10.3969/j.issn.1002-1671.2023.03.021.
[45]
SU Y, ZENG K J, YAN Z H, et al. Predicting the Ki-67 proliferation index in cervical cancer: a preliminary comparative study of four non-Gaussian diffusion-weighted imaging models combined with histogram analysis[J]. Quant Imaging Med Surg, 2024, 14(10): 7484-7495. DOI: 10.21037/qims-24-576.
[46]
LIU Y, WEN G, DONG T F, et al. MRI Radiomic models for prediction of Ki-67 expression in cervical cancer[J]. Radiol Pract, 2023, 38(11): 1436-1441. DOI: 10.13609/j.cnki.1000-0313.2023.11.012.
[47]
LI W, LI L J, LIU Z N, et al. Correlation study between 18F-FDG PET/MR imaging radiomic features and PD-L1 expression in cervical cancer[J]. Chin J Magn Reson Imag, 2024, 15(7): 32-38, 45. DOI: 10.12015/issn.1674-8034.2024.07.006.
[48]
JOU J, KATO S, MIYASHITA H, et al. Cancer-immunity marker RNA expression levels across gynecologic cancers: implications for immunotherapy[J]. Mol Cancer Ther, 2023, 22(11): 1352-1362. DOI: 10.1158/1535-7163.MCT-23-0270.
[49]
WANG R Z, ZHANG Y, SHAN F P. PD-L1: Can it be a biomarker for the prognosis or a promising therapeutic target in cervical cancer [J/OL]. Int Immunopharmacol, 2022, 103: 108484 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/34954558/. DOI: 10.1016/j.intimp.2021.108484.
[50]
LIU K H, YANG W, TIAN H P, et al. Nomogram based on clinical, pathological, and DWI quantitative parameters for predicting the programmed death-ligand 1 positive expression in cervical cancer: Comparison of different ROI options[J]. Chin J Magn Reson Imag, 2023, 14(10): 98-104, 115. DOI: 10.12015/issn.1674-8034.2023.10.017.
[51]
LIU K H, YANG W, TIAN H P. Relationships between intravoxel incoherent motion parameters and expressions of programmed cell death-1 (PD-1) and programmed cell death ligand-1 (PD-L1) in patients with cervical cancer[J/OL]. Clin Radiol, 2024, 79(2): e264-e272 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/37926648/. DOI: 10.1016/j.crad.2023.10.011.
[52]
LIU K H, YANG W, TIAN H P, et al. Association between programmed cell death ligand-1 expression in patients with cervical cancer and apparent diffusion coefficient values: a promising tool for patient´s immunotherapy selection[J]. Eur Radiol, 2024, 34(10): 6726-6737. DOI: 10.1007/s00330-024-10759-8.
[53]
CONLEY M J, EPIFANO I, KIRK A, et al. Microwave hyperthermia represses human papillomavirus oncoprotein activity and induces cell death due to cell stress in 3D tissue models of anogenital precancers and cancers[J/OL]. EBioMedicine, 2023, 91: 104577 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/37068348/. DOI: 10.1016/j.ebiom.2023.104577.
[54]
WEI M Z, ZHAO Z H, HU H J, et al. MRI radiomics parameters in predicting p53 of cervical squamous cell carcinoma[J]. Chin J Med Imag, 2019, 27(12): 934-937, 947. DOI: 10.3969/j.issn.1005-5185.2019.12.013.
[55]
HALLE M K, HODNELAND E, WAGNER-LARSEN K S, et al. Radiomic profiles improve prognostication and reveal targets for therapy in cervical cancer[J/OL]. Sci Rep, 2024, 14(1): 11339 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/38760387/. DOI: 10.1038/s41598-024-61271-4.
[56]
ZHANG H, LIU J H, DING Y, et al. Research progress of anti-HER-2 therapy for gynecological malignant tumors[J]. Chin J Obstet Gynecol, 2024, 59(5): 410-416. DOI: 10.3760/cma.j.cn112141-20231125-00221.
[57]
SHI H Y, SHAO Y, LU W G, et al. An analysis of HER2 amplification in cervical adenocarcinoma: correlation with clinical outcomes and the International Endocervical Adenocarcinoma Criteria and Classification[J]. J Pathol Clin Res, 2021, 7(1): 86-95. DOI: 10.1002/cjp2.184.
[58]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[59]
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
[60]
GAN L, HUA L, CHEN S J. Research progress of radiomics in common gynecologic malignancies[J]. Chin J Magn Reson Imag, 2024, 15(5): 227-234. DOI: 10.12015/issn.1674-8034.2024.05.037.
[61]
WEI R L, LU S L, LAI S S, et al. A subregion-based RadioFusionOmics model discriminates between grade 4 astrocytoma and glioblastoma on multisequence MRI[J/OL]. J Cancer Res Clin Oncol, 2024, 150(2): 73 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/38305926/. DOI: 10.1007/s00432-023-05603-3.
[62]
WANG S X, LIU X W, WU Y, et al. Habitat-based radiomics enhances the ability to predict lymphovascular space invasion in cervical cancer: a multi-center study[J/OL]. Front Oncol, 2023, 13: 1252074 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/37954078/. DOI: 10.3389/fonc.2023.1252074.
[63]
FANG M J, KAN Y Y, DONG D, et al. Multi-habitat based radiomics for the prediction of treatment response to concurrent chemotherapy and radiation therapy in locally advanced cervical cancer[J/OL]. Front Oncol, 2020, 10: 563 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/32432035/. DOI: 10.3389/fonc.2020.00563.
[64]
YANG C N, FAN Y, ZHAO D, et al. Habitat-based radiomics for predicting EGFR mutations in exon 19 and 21 from brain metastasis[J]. Acad Radiol, 2024, 31(9): 3764-3773. DOI: 10.1016/j.acra.2024.03.016.
[65]
CHEN H Q, LIU Y L, ZHAO J Q, et al. Quantification of intratumoral heterogeneity using habitat-based MRI radiomics to identify HER2-positive, -low and-zero breast cancers: a multicenter study[J/OL]. Breast Cancer Res, 2024, 26(1): 160 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/39578913/. DOI: 10.1186/s13058-024-01921-7.
[66]
WANG X Y, GUO X Y, ZHANG Z X, et al. Advances in methodological research on the analysis of the tumor radiomic habitat[J]. Chin Comput Med Imag, 2024, 30(3): 392-396. DOI: 10.19627/j.cnki.cn31-1700/th.2024.03.011.
[67]
LUM R T W, WANG X, ZHANG M, et al. Emerging role of radiogenomics in genetically triggered thoracic aortic aneurysm and dissection: a narrative review[J/OL]. Ann Transl Med, 2023, 11(10): 356 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/37675315/. DOI: 10.21037/atm-22-6149.
[68]
LIN B J, LONG X F, WU Z X, et al. Predicting lymph-vascular space invasion in cervical cancer based on MR-T2WI with deep learning and radiomic features combined with clinical features[J]. Chin J Magn Reson Imag, 2024, 15(3): 130-136. DOI: 10.12015/issn.1674-8034.2024.03.021.
[69]
JEONG S, YU H, PARK S H, et al. Comparing deep learning and handcrafted radiomics to predict chemoradiotherapy response for locally advanced cervical cancer using pretreatment MRI[J/OL]. Sci Rep, 2024, 14(1): 1180 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/38216687/. DOI: 10.1038/s41598-024-51742-z.
[70]
CIBI A, ROSE R J. Classification of stages in cervical cancer MRI by customized CNN and transfer learning[J]. Cogn Neurodyn, 2023, 17(5): 1261-1269. DOI: 10.1007/s11571-021-09777-9.
[71]
YUAN Q, WU S J, FAN L F, et al. A study on preoperative prediction of rectal cancer vascular invasion using MRI-based deep transfer learning radiomics[J]. Chin J Magn Reson Imag, 2025, 16(1): 54-60. DOI: 10.12015/issn.1674-8034.2025.01.009.

PREV Research progress of artificial intelligence in automatic segmentation and visualization of gastrointestinal tumor images
NEXT Research progress on fractional order calculus models in the diagnosis and treatment response prediction of malignant tumors
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn