Share:
Share this content in WeChat
X
Clinical Article
Evaluation of liver function and prediction of first decompensation event in patients with chronic hepatitis B by MRI functional liver imaging score and spontaneous portosystemic shunt
ZOU Jie  JIANG Yanli  FAN Fengxian  YANG Pin  YANG Wenxia  LI Darui  LIU Yang  ZHANG Jing 

Cite this article as: ZOU J, JIANG Y L, FAN F X, et al. Evaluation of liver function and prediction of first decompensation event in patients with chronic hepatitis B by MRI functional liver imaging score and spontaneous portosystemic shunt[J]. Chin J Magn Reson Imaging, 2025, 16(7): 30-38. DOI:10.12015/issn.1674-8034.2025.07.005.


[Abstract] Objective To investigate the value of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) enhanced MRI functional liver imaging score (FLIS) and spontaneous portal shunt (SPSS) on the liver function assessment in patients with chronic hepatitis B (CHB) and to construct a prediction model for the first decompensation event in CHB patients.Materials and methods A retrospective analysis was conducted on clinical and MRI data from 268 CHB patients who underwent Gd-EOB-DTPA-enhanced MRI at the Second Hospital of Lanzhou University between October 2019 and October 2021. The cohort included 192 males and 76 females, aged 21 to 77 years (mean ± SD: 48.5 ± 9.4). All patients had complete clinical laboratory test results within one week before or after the MRI examination. Patients were stratified into four groups based on the Fibrosis-4 (FIB-4) index and Child-Pugh (CP) classification: prehepatic cirrhosis chronic liver disease (CLD), early cirrhosis Child-Pugh A (CP A), mid-stage cirrhosis Child-Pugh B (CP B), and late cirrhosis Child-Pugh C (CP C). Comparison of clinical laboratory indicators and imaging parameters [FLIS, SPSS, spleen craniocaudal diameter (SCCD), portal vein width, splenic vein width] across groups using Friedman tests, chi-square tests and ANOVA for correlation analysis. Interobserver consistency of FLIS and its three components assessed via Kappa analysis. Diagnostic performance of imaging parameters for group differentiation evaluated using receiver operating characteristic (ROC) curves. Cox regression analysis of laboratory and imaging parameters with intergroup differences to predict the first decompensation event in CHB patients.Results (1) FLIS and its three parameters were moderately to strongly correlated with clinical groups (r = -0.464 to -0.671, P < 0.001). (2) Interobserver agreement for FLIS and its components was excellent (consistency coefficients: 0.931 to 1.000, P < 0.001). (3) SCCD was the optimal parameter for distinguishing CLD from CP A (AUC: 0.873, 95% CI: 0.769 to 0.904). The FLIS cutoff value of ≥ 5 best differentiated CLD/CP A from CP B/CP C (AUC: 0.839, 95% CI: 0.790 to 0.889), while FLIS ≥ 4 optimally separated CP B from CP C (AUC: 0.872, 95% CI: 0.820 to 0.924). (4) FLIS was not an independent predictor of first decompensation in CHB patients (log-rank of survival analysis, P = 0.203). Univariate analysis identified SPSS [hazard ratio (HR): 4.49] and SCCD ≥ 13.4 cm (HR: 4.81) as significant predictors (P < 0.05). The combination of SPSS (dichotomized) and SCCD provided superior predictive value for decompensation (AUC: 0.708, 95% CI: 0.631 to 0.785).Conclusions FLIS demonstrates optimal diagnostic performance for liver function grading in CHB patients. For predicting the first decompensation event in CHB patients, SPSS and SCCD exhibit significant predictive value.
[Keywords] chronic hepatitis B;hepatitis B virus decompensated cirrhosis;magnetic resonance imaging;gadolinium ethoxybenzyl diethylene triaminepentaacetic acid;functional liver imaging score

ZOU Jie1, 2, 3   JIANG Yanli1, 2, 3   FAN Fengxian1, 3   YANG Pin1, 3   YANG Wenxia1, 2   LI Darui1, 2   LIU Yang1, 2   ZHANG Jing1, 3*  

1 Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China

2 Second Clinical School, Lanzhou University, Lanzhou 730030, China

3 Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China

Corresponding author: ZHANG J, E-mail: ery_zhangjing@lzu.edu.cn

Conflicts of interest   None.

Received  2025-02-06
Accepted  2025-06-05
DOI: 10.12015/issn.1674-8034.2025.07.005
Cite this article as: ZOU J, JIANG Y L, FAN F X, et al. Evaluation of liver function and prediction of first decompensation event in patients with chronic hepatitis B by MRI functional liver imaging score and spontaneous portosystemic shunt[J]. Chin J Magn Reson Imaging, 2025, 16(7): 30-38. DOI:10.12015/issn.1674-8034.2025.07.005.

[1]
TRÉPO C, CHAN H L, LOK A. Hepatitis B virus infection[J]. Lancet, 2014, 384(9959): 2053-2063. DOI: 10.1016/s0140-6736(14)60220-8.
[2]
LIN Y, ZENG X, HU P F. Chinese consensus on clinical diagnosis and therapy of liver cirrhosis[J]. Chin J Gastroenterol, 2023, 28(5): 275-296. DOI: 10.3760/cma.j.cn311367-20230228-00093.
[3]
PUGH R N, MURRAY-LYON I M, DAWSON J L, et al. Transection of the oesophagus for bleeding oesophageal varices[J]. Br J Surg, 1973, 60(8): 646-649. DOI: 10.1002/bjs.1800600817.
[4]
ZHANG P P, XIAO A L, WANG H T. Verification of gadolinic acid enhanced MRI liver function imaging score in patients with chronic liver disease and cirrhosis: relationship between Child-Pugh score and liver function imaging score[J]. J Mol Imag, 2023, 46(1): 144-148. DOI: 10.12122/j.issn.1674-4500.2023.01.28.
[5]
CHEN X L, CHEN T W, LI Z L, et al. Spleen size measured on enhanced MRI for quantitatively staging liver fibrosis in minipigs[J]. J Magn Reson Imaging, 2013, 38(3): 540-547. DOI: 10.1002/jmri.24007.
[6]
BASTATI N, BEER L, BA-SSALAMAH A, et al. Gadoxetic acid-enhanced MRI-derived functional liver imaging score (FLIS) and spleen diameter predict outcomes in ACLD[J]. J Hepatol, 2022, 77(4): 1005-1013. DOI: 10.1016/j.jhep.2022.04.032.
[7]
JAIRATH V, REHAL S, LOGAN R, et al. Acute variceal haemorrhage in the United Kingdom: patient characteristics, management and outcomes in a nationwide audit[J]. Dig Liver Dis, 2014, 46(5): 419-426. DOI: 10.1016/j.dld.2013.12.010.
[8]
PRAKTIKNJO M, SIMÓN-TALERO M, RÖMER J, et al. Total area of spontaneous portosystemic shunts independently predicts hepatic encephalopathy and mortality in liver cirrhosis[J]. J Hepatol, 2020, 72(6): 1140-1150. DOI: 10.1016/j.jhep.2019.12.021.
[9]
JUNCU S, MINEA H, GIRLEANU I, et al. Clinical implications and management of spontaneous portosystemic shunts in liver cirrhosis[J/OL]. Diagnostics (Basel), 2024, 14(13): 1372 [2025-02-06]. https://www.mdpi.com/2075-4418/14/13/1372. DOI: 10.3390/diagnostics14131372.
[10]
THOMAIDES-BREARS H B, LEPE R, BANERJEE R, et al. Multiparametric MR mapping in clinical decision-making for diffuse liver disease[J]. Abdom Radiol (NY), 2020, 45(11): 3507-3522. DOI: 10.1007/s00261-020-02684-3.
[11]
ZHOU I Y, CATALANO O A, CARAVAN P. Advances in functional and molecular MRI technologies in chronic liver diseases[J]. J Hepatol, 2020, 73(5): 1241-1254. DOI: 10.1016/j.jhep.2020.06.020.
[12]
BASTATI N, WIBMER A, TAMANDL D, et al. Assessment of orthotopic liver transplant graft survival on gadoxetic acid-enhanced magnetic resonance imaging using qualitative and quantitative parameters[J]. Invest Radiol, 2016, 51(11): 728-734. DOI: 10.1097/RLI.0000000000000286.
[13]
LEE H J, HONG S B, LEE N K, et al. Validation of functional liver imaging scores (FLIS) derived from gadoxetic acid-enhanced MRI in patients with chronic liver disease and liver cirrhosis: the relationship between Child-Pugh score and FLIS[J]. Eur Radiol, 2021, 31(11): 8606-8614. DOI: 10.1007/s00330-021-07955-1.
[14]
SAKAI N, TAKAYASHIKI T, TAKANO S, et al. Low functional liver imaging score is associated with poor prognosis following hepatectomy for hepatocellular carcinoma[J/OL]. Sci Rep, 2024, 14: 31290 [2025-02-06]. https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2022.1071025/full. DOI: 10.1038/s41598-024-82741-9.
[15]
MAINO C, ROMANO F, FRANCO P N, et al. Functional liver imaging score (FLIS) can predict adverse events in HCC patients[J/OL]. Eur J Radiol, 2024, 180: 111695 [2025-02-06]. https://www.ejradiology.com/article/S0720-048X(24)00411-X/abstract. DOI: 10.1016/j.ejrad.2024.111695.
[16]
LI X X, LIU B, ZHAO Y F, et al. Functional liver imaging score derived from gadoxetic acid-enhanced MRI predicts Cachexia and prognosis in hepatocellular carcinoma patients[J]. Curr Med Sci, 2024, 44(5): 1018-1025. DOI: 10.1007/s11596-024-2930-y.
[17]
WU X R, WANG Y H, HE Y W, et al. Development and validation of a predictive model for liver failure after transarterial chemoembolization using gadoxetic acid-enhanced MRI and functional liver imaging score[J]. Acad Radiol, 2025, 32(6): 3315-3323. DOI: 10.1016/j.acra.2024.12.068.
[18]
ELKILANY A, GEISEL D, MÜLLER T, et al. Gadoxetic acid-enhanced MRI in primary sclerosing cholangitis: added value in assessing liver function and monitoring disease progression[J]. Abdom Radiol (NY), 2021, 46(3): 979-991. DOI: 10.1007/s00261-020-02731-z.
[19]
TANG G X, LIU J B, LIU P, et al. Evaluation of liver function in patients with liver cirrhosis and chronic liver disease using functional liver imaging scores at different acquisition time points[J/OL]. Front Genet, 2022, 13: 1071025 [2025-02-06]. https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2022.1071025/full. DOI: 10.3389/fgene.2022.1071025.
[20]
DU Y N, LV Z B, GUAN C S, et al. A comparative study of FLIS and three features derived from gadoxetic acid-enhanced MRI with child-turcotte-pugh classification[J]. J Clin Radiol, 2021, 40(11): 2134-2138. DOI: 10.13437/j.cnki.jcr.2021.11.019.
[21]
GUO Y W, GUO T T, SUN B, et al. A comparative study of FLIS and imaging signs derived from Gd-EOB-DTPA- enhanced MRI with albumin-bilirubin (ALBI) grade in evaluating liver function[J]. J Clin Radiol, 2024, 43(4): 585-590. DOI: 10.13437/j.cnki.jcr.2024.04.017.
[22]
POETTER-LANG S, BASTATI N, MESSNER A, et al. Quantification of liver function using gadoxetic acid-enhanced MRI[J]. Abdom Radiol (NY), 2020, 45(11): 3532-3544. DOI: 10.1007/s00261-020-02779-x.
[23]
YAO L X, LAI W J, JIN C Z, et al. The value of Gd-EOB-DTPA enhanced MRI in liver function evaluation[J]. J Clin Radiol, 2022, 41(5): 897-901. DOI: 10.13437/j.cnki.jcr.2022.05.033.
[24]
TAMADA T, ITO K, SONE T, et al. Gd-EOB-DTPA enhanced MR imaging: evaluation of biliary and renal excretion in normal and cirrhotic livers[J/OL]. Eur J Radiol, 2011, 80(3): e207-e211 [2025-02-06]. https://www.ejradiology.com/article/S0720-048X(10)00409-2/abstract. DOI: 10.1016/j.ejrad.2010.08.033.
[25]
LEE N K, KIM S, KIM G H, et al. Significance of the "delayed hyperintense portal vein sign" in the hepatobiliary phase MRI obtained with Gd-EOB-DTPA[J]. J Magn Reson Imaging, 2012, 36(3): 678-685. DOI: 10.1002/jmri.23700.
[26]
CHEN X L, CHEN T W, ZHANG X M, et al. Platelet count combined with right liver volume and spleen volume measured by magnetic resonance imaging for identifying cirrhosis and esophageal varices[J]. World J Gastroenterol, 2015, 21(35): 10184-10191. DOI: 10.3748/wjg.v21.i35.10184.
[27]
LIU C, CAO Z J, YAN H D, et al. A novel SAVE score to stratify decompensation risk in compensated advanced chronic liver disease (CHESS2102): an international multicenter cohort study[J]. Am J Gastroenterol, 2022, 117(10): 1605-1613. DOI: 10.14309/ajg.0000000000001873.
[28]
LI X, TU Y, TANG B, et al. Research advances in cirrhotic portal hypertension with spontaneous portosystemic shunt[J]. J Clin Hepatol, 2021, 37(10): 2435-2438. DOI: 10.3969/j.issn.1001-5256.2021.10.037.
[29]
VIDAL-GONZÁLEZ J, QUIROGA S, SIMÓN-TALERO M, et al. Spontaneous portosystemic shunts in liver cirrhosis: new approaches to an old problem[J/OL]. Therap Adv Gastroenterol, 2020, 13: 1756284820961287 [2025-02-06]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7533929/. DOI: 10.1177/1756284820961287.
[30]
KE Q, HE J, HUANG X H, et al. Spontaneous portosystemic shunts outside the esophago-gastric region: Prevalence, clinical characteristics, and impact on mortality in cirrhotic patients: a systematic review and meta-analysis[J]. Eur J Intern Med, 2023, 112: 77-85. DOI: 10.1016/j.ejim.2023.03.024.
[31]
SCHLICHTING P, FAUERHOLDT L, CHRISTENSEN E, et al. Clinical relevance of restrictive morphological criteria for the diagnosis of cirrhosis in liver biopsies[J]. Liver, 1981, 1(1): 56-61. DOI: 10.1111/j.1600-0676.1981.tb00022.x.
[32]
THÖRN R, CHRISTENSEN E, WIXNER J, et al. Survival after first diagnosis of oesophageal or gastric varices in a single centre in northern Sweden: a retrospective study[J]. Clin Exp Hepatol, 2022, 8(2): 103-110. DOI: 10.5114/ceh.2022.114897.
[33]
YI F F, GUO X Z, WANG L, et al. Impact of spontaneous splenorenal shunt on liver volume and long-term survival of liver cirrhosis[J]. J Gastroenterol Hepatol, 2021, 36(6): 1694-1702. DOI: 10.1111/jgh.15386.
[34]
VIDAL-GONZÁLEZ J, MARTÍNEZ J, MULAY A, et al. Evolution of spontaneous portosystemic shunts over time and following aetiological intervention in patients with cirrhosis[J/OL]. JHEP Rep, 2024, 6(2): 100977 [2025-02-06]. https://www.jhep-reports.eu/article/S2589-5559(23)00308-7/fulltext. DOI: 10.1016/j.jhepr.2023.100977.
[35]
ISHIKAWA T, SASAKI R, NISHIMURA T, et al. Improved hepatic reserve and fibrosis in a case of "portal-systemic liver failure" by portosystemic shunt occlusion[J/OL]. Am J Case Rep, 2020, 21: e921236 [2025-02-06]. https://amjcaserep.com/abstract/index/idArt/921236. DOI: 10.12659/AJCR.921236.
[36]
LALEMAN W, PRAKTIKNJO M, LAURIDSEN M M, et al. Closing spontaneous portosystemic shunts in cirrhosis: Does it make sense Does it work What does it take [J]. Metab Brain Dis, 2023, 38(5): 1717-1728. DOI: 10.1007/s11011-022-01121-2.
[37]
KOTHARI R, KHANNA D, KAR P. To evaluate the prevalence of spontaneous portosystemic shunts in decompensated cirrhosis patients and its prognostic significance[J]. Indian J Gastroenterol, 2023, 42(5): 677-685. DOI: 10.1007/s12664-023-01393-1.
[38]
KIM N H, KANG J H. Inter-reader reliability of functional liver imaging score derived from gadoxetic acid-enhanced MRI: a meta-analysis[J]. Abdom Radiol (NY), 2023, 48(3): 886-894. DOI: 10.1007/s00261-022-03785-x.

PREV Value of MRI based on haemodynamic parameters and apparent diffusion coefficient in the differential diagnosis of breast phyllodes tumours and fibroadenomas
NEXT The value of a clinical-multiparametric MRI prediction model based on O-RADS MRI scoring system in differentiating between benign and malignant adnexal masses of the uterus
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn