Share:
Share this content in WeChat
X
Technical Article
Application value of diffusion-weighted imaging based on deep learning reconstruction algorithm in cranial MRI examination
ZHANG Yanhua  YU Renqiang  YU Bin  WU Zhiwei  ZHAO Chungang  WAN Lu  WAN Chengxin  ZHANG Zhiwei 

Cite this article as: ZHANG Y H, YU R Q, YU B, et al. Application value of diffusion-weighted imaging based on deep learning reconstruction algorithm in cranial MRI examination[J]. Chin J Magn Reson Imaging, 2025, 16(7): 65-71. DOI:10.12015/issn.1674-8034.2025.07.010.


[Abstract] Objective To explore the application value of diffusion weighted imaging (DWI) based on deep learning reconstruction algorithm (DLR) in cranial MRI examination.Materials and Methods A retrospective analysis was conducted on the MRI imaging data of 40 patients with intracranial space occupying lesions. Four sets of image quality differences were compared between conventional reconstruction (c2-DWI, c1-DWI) and DLR (DL2-DWI, DL1-DWI) with a number of excitations (NEX) of 2 and 1. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of gray and white matter were compared, as well as the apparent diffusion coefficient (ADC) of the lesion area and the contralateral normal area. Two physicians used a double-blind method to score the overall image quality, noise level, and magnetic susceptibility artifacts using a 5-point scale.Results The SNR and CNR of DLR sequence gray matter and white matter were higher than those of conventional reconstructed sequence, and the difference was statistically significant (P < 0.001). There was no statistically significant difference in ADC values between the lesion area and the contralateral normal area (P > 0.05). The overall image quality and noise level scores of DLR are higher than those of conventional reconstruction, and the difference is statistically significant (P < 0.001). There was no statistically significant difference in magnetic sensitivity artifacts (P > 0.05).Conclusions DLR can significantly improve the SNR, CNR, and subjective score of DWI images, effectively reducing image noise. While NEX is halved and scanning time is shortened, although there is limited improvement in magnetic sensitivity artifacts, it does not affect the accuracy of ADC values.
[Keywords] diffusion weighted imaging;apparent diffusion coefficient;number of excitations;deep learning reconstruction;intracranial space-occupying lesions;magnetic resonance imaging

ZHANG Yanhua1   YU Renqiang2   YU Bin2   WU Zhiwei1   ZHAO Chungang1   WAN Lu3   WAN Chengxin2   ZHANG Zhiwei2*  

1 Department of Radiology, Dazhou Central Hospital, Dazhou 635000, China

2 Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

3 Department of Radiology, Chongqing Red Cross Hospital (Jiangbei District People's Hospital), Chongqing 400020, China

Corresponding author: ZHANG Z W, E-mail: zhangzhiweicqmu@163.com

Conflicts of interest   None.

Received  2024-11-15
Accepted  2025-07-06
DOI: 10.12015/issn.1674-8034.2025.07.010
Cite this article as: ZHANG Y H, YU R Q, YU B, et al. Application value of diffusion-weighted imaging based on deep learning reconstruction algorithm in cranial MRI examination[J]. Chin J Magn Reson Imaging, 2025, 16(7): 65-71. DOI:10.12015/issn.1674-8034.2025.07.010.

[1]
ZHAO L L, WEI L J. Application value of magnetic resonance spectroscopy in the diagnosis of intracranial space-occupying lesions[J]. Med Forum, 2025, 29(11): 32-34, 63. DOI: 10.19435/j.1672-1721.2025.11.009.
[2]
TIAN X, WANG Y L, DING S, et al. Diagnostic value of magnetic resonance spectroscopy for intracranial space-occupying lesions[J]. Chin J Radiol Health, 2023, 32(5): 565-568, 579. DOI: 10.13491/j.issn.1004-714X.2023.05.017.
[3]
ZHONG Y H, YANG Q, LIU Z, et al. The value of MRI plain scan and DWI in the diagnosis of brain metastases[J]. Chin J Oncol, 2021, 43(4): 466-471. DOI: 10.3760/cma.j.cn112152-20190313-00153.
[4]
XIAO X Y, HOU B, XIAO Y, et al. To investigate the MRI application value in the department of Neurosurgery before and after operation[J]. J Hunan Norm Univ Med Sci, 2015, 12(6): 92-93.
[5]
ZHANG G S, XIAO G, DAI Z Z, et al. Compressed sensing technology and its application in MRI[J]. Chin J Magn Reson Imag, 2013, 4(4): 314-320. DOI: 10.3969/j.issn.1674-8034.2013.04.016.
[6]
HUTCHINSON M, RAFF U. Fast MRI data acquisition using multiple detectors[J]. Magn Reson Med, 1988, 6(1): 87-91. DOI: 10.1002/mrm.1910060110.
[7]
YANG Y G, GUO G. The application of different NEX amide proton transfer imaging in brain tumors on 1.5 T MRI scanner[J]. Chin J Magn Reson Imag, 2017, 8(12): 923-928. DOI: 10.12015/issn.1674-8034.2017.12.009.
[8]
SCHIAVINA R, CHESSA F, BORGHESI M, et al. State-of-the-art imaging techniques in the management of preoperative staging and re-staging of prostate cancer[J]. Int J Urol, 2019, 26(1): 18-30. DOI: 10.1111/iju.13797.
[9]
ZENG G S, GUO Y, ZHAN J Y, et al. A review on deep learning MRI reconstruction without fully sampled k-space[J/OL]. BMC Med Imaging, 2021, 21(1): 195 [2024-11-14]. https://pubmed.ncbi.nlm.nih.gov/34952572/. DOI: 10.1186/s12880-021-00727-9.
[10]
EDUPUGANTI V, MARDANI M, VASANAWALA S, et al. Uncertainty quantification in deep MRI reconstruction[J]. IEEE Trans Med Imaging, 2021, 40(1): 239-250. DOI: 10.1109/TMI.2020.3025065.
[11]
HAHN S, YI J, LEE H J, et al. Image quality and diagnostic performance of accelerated shoulder MRI with deep learning-based reconstruction[J]. AJR Am J Roentgenol, 2022, 218(3): 506-516. DOI: 10.2214/AJR.21.26577.
[12]
UEDA T, OHNO Y, YAMAMOTO K, et al. Deep learning reconstruction of diffusion-weighted MRI improves image quality for prostatic imaging[J]. Radiology, 2022, 303(2): 373-381. DOI: 10.1148/radiol.204097.
[13]
YU Y, ZHAO C, QI Z G, et al. Application of deep learning reconstruction in improving the quality of neuromelanin magnetic resonance image[J]. Chin J Magn Reson Imag, 2023, 14(5): 11-15. DOI: 10.12015/issn.1674-8034.2023.05.003.
[14]
YASAKA K, TANISHIMA T, OHTAKE Y, et al. Deep learning reconstruction for 1.5 T cervical spine MRI: effect on interobserver agreement in the evaluation of degenerative changes[J]. Eur Radiol, 2022, 32(9): 6118-6125. DOI: 10.1007/s00330-022-08729-z.
[15]
PARK J C, PARK K J, PARK M Y, et al. Fast T2-weighted imaging with deep learning-based reconstruction: evaluation of image quality and diagnostic performance in patients undergoing radical prostatectomy[J]. J Magn Reson Imaging, 2022, 55(6): 1735-1744. DOI: 10.1002/jmri.27992.
[16]
SANDINO C M, LAI P, VASANAWALA S S, et al. Accelerating cardiac cine MRI using a deep learning-based ESPIRiT reconstruction[J]. Magn Reson Med, 2021, 85(1): 152-167. DOI: 10.1002/mrm.28420.
[17]
KIM E H, CHOI M H, LEE Y J, et al. Deep learning-accelerated T2-weighted imaging of the prostate: impact of further acceleration with lower spatial resolution on image quality[J/OL]. Eur J Radiol, 2021, 145: 110012 [2024-11-14]. https://pubmed.ncbi.nlm.nih.gov/34753082/. DOI: 10.1016/j.ejrad.2021.110012.
[18]
FILLI L, GHAFOOR S, KENKEL D, et al. Simultaneous multi-slice readout-segmented echo planar imaging for accelerated diffusion-weighted imaging of the breast[J]. Eur J Radiol, 2016, 85(1): 274-278. DOI: 10.1016/j.ejrad.2015.10.009.
[19]
SHANBHOGUE K, TONG A, SMEREKA P, et al. Accelerated single-shot T2-weighted fat-suppressed (FS) MRI of the liver with deep learning-based image reconstruction: qualitative and quantitative comparison of image quality with conventional T2-weighted FS sequence[J]. Eur Radiol, 2021, 31(11): 8447-8457. DOI: 10.1007/s00330-021-08008-3.
[20]
LIU W, PATIL D, HOWARD D H, et al. Impact of prebiopsy magnetic resonance imaging of the prostate on cancer detection and treatment patterns[J/OL]. Urol Oncol, 2019, 37(3): 181.e15-181.181.e21 [2024-11-14]. https://pubmed.ncbi.nlm.nih.gov/30514604/. DOI: 10.1016/j.urolonc.2018.11.004.
[21]
SUBHAS N, BENEDICK A, OBUCHOWSKI N A, et al. Comparison of a fast 5-minute shoulder MRI protocol with a standard shoulder MRI protocol: a multiinstitutional multireader study[J/OL]. AJR Am J Roentgenol, 2017, 208(4): W146-W154 [2024-11-14]. https://pubmed.ncbi.nlm.nih.gov/28140650/. DOI: 10.2214/AJR.16.17041.
[22]
LÜ X Y, FENG W M, ZHOU H Y, et al. Feasibility of reducing scan time based on deep learning reconstruction in magnetic resonance imaging: a phantom study[J]. J Diagn Concepts Pract, 2024, 23(2): 131-138. DOI: 10.16150/j.1671-2870.2024.02.006.
[23]
YANG J, LI Q G, WU T, et al. A comparative study on the enhancement of high resolution coronal image quality by deep learning reconstruction[J]. Chin J Magn Reson Imag, 2023, 14(5): 21-24, 30. DOI: 10.12015/issn.1674-8034.2023.05.005.
[24]
WU H F, CHEN X Z, ZHANG M Y, et al. Application of head enhanced T1WI sequences based on deep learning reconstruction technology in the transformation of pituitary neuroendocrine neoplasms[J]. Chin J Magn Reson Imag, 2024, 15(4): 133-138. DOI: 10.12015/issn.1674-8034.2024.04.021.
[25]
WANG Y C, ZHANG X X, HU M C, et al. Value of deep learning reconstruction in optimizing prostate MR T2-weighted imaging scanning time and imaging quality[J]. Chin J Magn Reson Imag, 2023, 14(5): 48-52, 59. DOI: 10.12015/issn.1674-8034.2023.05.010.
[26]
KE Z, LI L, SONG X Y, et al. Novel deep learning-based T2-weighted imaging of the prostate provides superior image quality[J]. Chin J Magn Reson Imag, 2023, 14(5): 41-47. DOI: 10.12015/issn.1674-8034.2023.05.009.
[27]
LEBEL R M. Performance characterization of a novel deep learning-based MR image reconstruction pipeline[EB/OL]. 2020: arXiv:2008.06559 [2022-07-01]. https://arxiv.org/abs/2008.06559.
[28]
ZHANG Y, XU X, XIAO Y, et al. Application of denoising in lumbar spine MRI based on deep learning reconstruction algorithm[J]. China Med Devices, 2021, 36(10): 19-23. DOI: 10.3969/j.issn.1674-1633.2021.10.004.
[29]
YAN F H. The clinical application and development prospect of deep learning MRI reconstruction algorithm[J]. Chin J Magn Reson Imag, 2023, 14(5): 8-10. DOI: 10.112015/issn.1674-8034.2023.05.002.
[30]
YU Y, ZHAO C, QI Z G, et al. Application of deep learning reconstruction in improving the quality of neuromelanin magnetic resonance image[J]. Chin J Magn Reson Imag, 2023, 14(5): 11-15. DOI: 10.12015/issn.1674-8034.2023.05.003.
[31]
ZHUANG Y, CHEN J, LI J Y, et al. Value of multiparameter MRI radiomics model in predicting the pathological diferentiation of pancreatic ductal adenocarcinoma[J]. J Clin Radiol, 2023, 42(11): 1768-1773. DOI: 10.13437/j.cnki.jcr.2023.11.015.
[32]
YAN X C, GUO S J, YU B L, et al. Application of ADC value measurement in the diagnosis of high signal tumors in cranial DWI[J] Journal of Practical Radiology, 2015(5): 863-865. DOI: 10.3969/j.issn.1002-1671.2015.05.043.
[33]
MENG Y F, ZHOU C H, HE D, et al. The study of different b-values on magnetic resonance diffusion-weighted imaging in patients with TIA[J]. J Brain Nerv Dis, 2017, 25(5): 281-286.
[34]
CHEN P, TAN C, LI Y H, et al. Optimization of DWI pulse sequence in patients with acute ischemic stroke[J]. Int J Med Radiol, 2019, 42(4): 391-394. DOI: 10.19300/j.2019.L6761.
[35]
LI Q G, YIN Y Y, ZHAO C, et al. Application of deep learning in intravoxel incoherent motion brain magnetic resonance imaging quality[J]. Chin J Magn Reson Imag, 2023, 14(5): 16-20. DOI: 10.12015/issn.1674-8034.2023.05.004.

PREV The feasibility study of quantitative assessment of lumbar paravertebral muscles by synthetic magnetic resonance technique
NEXT Clinical evaluation of a transportable MRI detection array for multi-site human imaging applications
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn