Share:
Share this content in WeChat
X
Technical Article
Clinical evaluation of a transportable MRI detection array for multi-site human imaging applications
XIA Chundongqiu  LI Zongye  CUI Zhimeng  MIAO Jiali  ZHANG Jun 

Cite this article as: XIA C D Q, LI Z Y, CUI Z M, et al. Clinical evaluation of a transportable MRI detection array for multi-site human imaging applications[J]. Chin J Magn Reson Imaging, 2025, 16(7): 72-80. DOI:10.12015/issn.1674-8034.2025.07.011.


[Abstract] Objective To evaluate the feasibility and imaging performance of a self-developed transportable magnetic resonance imaging detection array (TMRDA) for multi-site imaging of human body.Materials and Methods Phantom studies were performed to compare the magnetic resonance imaging (MRI) performance of 24-channel TMRDA against two commercial coils: a 24-channel head and neck combined coil and a 24-channel abdominal coil. Subsequently, 34 healthy volunteers underwent standardized scans (brain, liver, and hip) using both systems. Quantitative metrics including signal-to-noise ratio (SNR), uniformity, percent signal ghosting, contrast-to-noise ratio (CNR), contrast ratio (CR), and MRI quantitative parameters were evaluated. Two radiologists performed subjective image quality assessments.Results In phantom studies, TMRDA demonstrated significantly superior SNR and uniformity on both T1-weighted imaging and T2-weighted imaging compared to commercial coils (P < 0.001), with comparable or better percent signal ghosting. Volunteer studies showed TMRDA achieved significantly higher SNR and CNR across all anatomical regions (P < 0.001) with equivalent or better CR. No significant differences were observed in quantitative MRI parameters or subjective image quality scores (P > 0.05).Conclusions The TMRDA achieves comparable or superior image quality to dedicated commercial coils for brain, liver, and hip MRI examinations, demonstrating significant clinical utility for multi-site applications while maintaining diagnostic confidence.
[Keywords] transportable;magnetic resonance imaging;detection array;image quality;signal-to-noise ratio;contrast-to-noise ratio

XIA Chundongqiu   LI Zongye   CUI Zhimeng   MIAO Jiali   ZHANG Jun*  

Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China

Corresponding author: ZHANG J, E-mail: zhj81828@163.com

Conflicts of interest   None.

Received  2025-05-07
Accepted  2025-07-05
DOI: 10.12015/issn.1674-8034.2025.07.011
Cite this article as: XIA C D Q, LI Z Y, CUI Z M, et al. Clinical evaluation of a transportable MRI detection array for multi-site human imaging applications[J]. Chin J Magn Reson Imaging, 2025, 16(7): 72-80. DOI:10.12015/issn.1674-8034.2025.07.011.

[1]
MA Y J, JANG H, JERBAN S, et al. Making the invisible visible-ultrashort echo time magnetic resonance imaging: Technical developments and applications[J/OL]. Appl Phys Rev, 2022, 9(4): 041303 [2025-05-06]. https://pubmed.ncbi.nlm.nih.gov/36467869/. DOI: 10.1063/5.0086459.
[2]
LAU D, CORRIE P G, GALLAGHER F A. MRI techniques for immunotherapy monitoring[J/OL]. J Immunother Cancer, 2022, 10(9): e004708 [2025-05-06]. https://pubmed.ncbi.nlm.nih.gov/36122963/. DOI: 10.1136/jitc-2022-004708.
[3]
TIRYAKI M E, ELMACıOĞLU Y G, SITTI M. Magnetic guidewire steering at ultrahigh magnetic fields[J/OL]. Sci Adv, 2023, 9(17): eadg6438 [2025-05-06]. https://pubmed.ncbi.nlm.nih.gov/37126547/. DOI: 10.1126/sciadv.adg6438.
[4]
CHOI C H, FELDER J, LERCHE C, et al. MRI coil development strategies for hybrid MR-PET systems: a review[J/OL]. IEEE Rev Biomed Eng, 2022, 17: 342-350 [2025-05-06]. https://pubmed.ncbi.nlm.nih.gov/37015609/. DOI: 10.1109/RBME.2022.3227337.
[5]
HE Z, ZHU Y N, CHEN Y, et al. A deep unrolled neural network for real-time MRI-guided brain intervention[J/OL]. Nat Commun, 2023, 14(1): 8257 [2025-05-06]. https://pubmed.ncbi.nlm.nih.gov/38086851/. DOI: 10.1038/s41467-023-43966-w.
[6]
GU H, FU Y F, YU B, et al. Ultra-high static magnetic fields cause immunosuppression through disrupting B-cell peripheral differentiation and negatively regulating BCR signaling[J/OL]. MedComm (2020), 2023, 4(5): e379 [2025-05-06]. https://pubmed.ncbi.nlm.nih.gov/37789963/. DOI: 10.1002/mco2.379.
[7]
LI N, FEI P, TOUS C, et al. Human-scale navigation of magnetic microrobots in hepatic arteries[J/OL]. Sci Robot, 2024, 9(87): eadh8702 [2025-05-06]. https://pubmed.ncbi.nlm.nih.gov/38354257/. DOI: 10.1126/scirobotics.adh8702.
[8]
REN Q F, GONG H, YIN Z J, et al. Study of application on neonatal head coil in brain MRI examination[J]. Chin J Magn Reson Imag, 2025, 16(4): 99-104. DOI: 10.12015/issn.1674-8034.2025.04.015.
[9]
ZHANG S, LI G H, WU L. Design and verification of flexible and elastic coil for the head of wearable MRI device[J]. Chin J Magn Reson Imag, 2022, 13(2): 62-68. DOI: 10.12015/issn.1674-8034.2022.02.013.
[10]
WANG X, ZHENG F L, LU X P, et al. The application value of self-developed high-resolution pelvic-specific coil in 3.0 T MRI equipment[J]. Chin J Magn Reson Imag, 2024, 15(1): 158-162, 178. DOI: 10.12015/issn.1674-8034.2024.01.025.
[11]
FENG X P, HE Y H, QU W, et al. Spray-coated perovskite hemispherical photodetector featuring narrow-band and wide-angle imaging[J/OL]. Nat Commun, 2022, 13(1): 6106 [2025-05-06]. https://pubmed.ncbi.nlm.nih.gov/36243753/. DOI: 10.1038/s41467-022-33934-1.
[12]
ZHANG X, HU L L, QU Z, et al. Design of a radiofrequency coil for low-field magnetic resonance imaging by target-field method combined with CST simulation[J]. Chin J Med Phys, 2021, 38(6): 743-748. DOI: 10.3969/j.issn.1005-202X.2021.06.016.
[13]
WIGGINS G C, TRIANTAFYLLOU C, POTTHAST A, et al. 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry[J]. Magn Reson Med, 2006, 56(1): 216-223. DOI: 10.1002/mrm.20925.
[14]
LEE G, DOES M D, AVILA R, et al. Implantable, bioresorbable radio frequency resonant circuits for magnetic resonance imaging[J/OL]. Adv Sci (Weinh), 2024, 11(27): e2301232 [2025-05-06]. https://pubmed.ncbi.nlm.nih.gov/37357139/. DOI: 10.1002/advs.202301232.
[15]
LONGUEFOSSE A, RAOULT J, BENLALA I, et al. Generating high-resolution synthetic CT from lung MRI with ultrashort echo times: initial evaluation in cystic fibrosis[J/OL]. Radiology, 2023, 308(1): e230052 [2025-05-06]. https://pubmed.ncbi.nlm.nih.gov/37404152/. DOI: 10.1148/radiol.230052.
[16]
GONG Z G, ZHAN S H, KONG Y N, et al. Application value of high field flexible coil in craniocerebral imaging quality[J]. Radiol Pract, 2020, 35(4): 555-559. DOI: 10.13609/j.cnki.1000-0313.2020.04.030.
[17]
ZHANG J, LI J L, SHEN Y Q, et al. 3D printing technology improved animal coils to optimize KM mice magnetic resonance imaging study[J]. Chin J Magn Reson Imag, 2020, 11(2): 141-144. DOI: 10.12015/issn.1674-8034.2020.02.013.
[18]
VOSSHENRICH J, BRUNO M, CANTARELLI RODRIGUES T, et al. Arthroscopy-validated diagnostic performance of 7-minute five-sequence deep learning super-resolution 3-T shoulder MRI[J/OL]. Radiology, 2025, 314(2): e241351 [2025-05-06]. https://pubmed.ncbi.nlm.nih.gov/39964264/. DOI: 10.1148/radiol.241351.
[19]
COHEN J. A coefficient of agreement for nominal scales[J]. Educ Psychol Meas, 1960, 20(1): 37-46. DOI: 10.1177/001316446002000104.
[20]
CHEN C F, MO J D, HOU J W, et al. TOPIQ: a top-down approach from semantics to distortions for image quality assessment[J/OL]. IEEE Trans Image Process, 2024, 33: 2404-2418 [2025-05-06]. https://pubmed.ncbi.nlm.nih.gov/38517711/. DOI: 10.1109/TIP.2024.3378466.
[21]
XU X, PENG W L, ZHANG J G, et al. The application value of artificial intelligence-based filtering and interpolated image reconstruction algorithm in abdominal magnetic resonance image denoising[J]. J Sichuan Univ Med Sci, 2021, 52(2): 293-299. DOI: 10.12182/20210360104.
[22]
WACHOWICZ K, DEZANCHE N, YIP E, et al. TU-H-BRA-09: relationship between B0 and the contrast-to-noise ratio (CNR) of tumour to background for MRI/radiotherapy hybrids[J/OL]. Med Phys, 2016, 43(6Part36): 3770 [2025-05-06]. https://aapm.onlinelibrary.wiley.com/doi/10.1118/1.4957631. DOI: 10.1118/1.4957631.
[23]
YE F, WEN X X, YING W F, et al. Comparison of magnetic resonance imaging quality between hard and soft coils of shoulder joint[J]. Chin Imag J Integr Tradit West Med, 2022, 20(5): 474-478. DOI: 10.3969/j.issn.1672-0512.2022.05.018.
[24]
SREEDHER G, HO M L, SMITH M, et al. Magnetic resonance imaging quality control, quality assurance and quality improvement[J]. Pediatr Radiol, 2021, 51(5): 698-708. DOI: 10.1007/s00247-021-05043-6.
[25]
ZHENG L, ZHOU T T, YUAN H, et al. Comparative study on non inferiority of MRI knee joint 8 channel hard coil and 16 channel flexible coil[J]. Journal of Practical Radiology, 2024, 40(6): 994-997. DOI: 10.3969/j.issn.1002-1671.2024.06.031.
[26]
WU J S, ZHU F P, ZHUANG D X, et al. Preliminary application of 3.0 T intraoperative magnetic resonance imaging neuronavigation system in China[J]. Chin J Surg, 2011, 49(8): 683-687. DOI: 10.3760/cma.j.issn.0529-5815.2011.08.004.
[27]
LUPPI A I, SINGLETON S P, HANSEN J Y, et al. Contributions of network structure, chemoarchitecture and diagnostic categories to transitions between cognitive topographies[J]. Nat Biomed Eng, 2024, 8(9): 1142-1161. DOI: 10.1038/s41551-024-01242-2.
[28]
LI N, ZHOU Y X, LI Y Q, et al. Transformable 3D curved high-density liquid metal coils-an integrated unit for general soft actuation, sensing and communication[J/OL]. Nat Commun, 2024, 15: 7679 [2025-05-06]. https://pubmed.ncbi.nlm.nih.gov/39237505/. DOI: 10.1038/s41467-024-51648-4.
[29]
WU K, ZHU X, ANDERSON S W, et al. Wireless, customizable coaxially shielded coils for magnetic resonance imaging[J/OL]. Sci Adv, 2024, 10(24): eadn5195 [2025-05-06]. https://pubmed.ncbi.nlm.nih.gov/38865448/. DOI: 10.1126/sciadv.adn5195.
[30]
MIAO J L, WAN X Y, FU J Y, et al. Application of multi-contrast quantitative MR imaging in central nervous system[J]. Chin J Magn Reson Imag, 2024, 15(4): 165-170. DOI: 10.12015/issn.1674-8034.2024.04.027.
[31]
LI B B, XIE R B, SUN Z C, et al. Nonlinear metamaterials enhanced surface coil array for parallel magnetic resonance imaging[J/OL]. Nat Commun, 2024, 15(1): 7949 [2025-05-06]. https://pubmed.ncbi.nlm.nih.gov/39261525/. DOI: 10.1038/s41467-024-52423-1.
[32]
ZHANG B, WANG B L, HO J, et al. Twenty-four-channel high-impedance glove array for hand and wrist MRI at 3T[J]. Magn Reson Med, 2022, 87(5): 2566-2575. DOI: 10.1002/mrm.29147.
[33]
ZHANG D S, RAHMAT-SAMII Y. A novel flexible electrotextile 3T MRI RF coil array for carotid artery imaging: design, characterization, and prototyping[J]. IEEE Trans Anntenas Propag, 2019, 67(8): 5115-5125. DOI: 10.1109/TAP.2019.2891700.
[34]
PORT A, LUECHINGER R, BRUNNER D O, et al. Elastomer coils for wearable MR detection[J]. Magn Reson Med, 2021, 85(5): 2882-2891. DOI: 10.1002/mrm.28662.
[35]
SOON S H, LI X, WAKS M, et al. Large improvement in RF magnetic fields and imaging SNR with whole-head high-permittivity slurry helmet for human-brain MRI applications at 7 T[J]. Magn Reson Med, 2025, 93(3): 1205-1219. DOI: 10.1002/mrm.30350.
[36]
WEI Z D, ZHANG Z L, CHEN Q Y, et al. Open-transmit and flexible receiver array for high resolution ultrahigh-field fMRI of the human sensorimotor cortex[J/OL]. Commun Biol, 2025, 8(1): 482 [2025-05-06]. https://pubmed.ncbi.nlm.nih.gov/40121362/. DOI: 10.1038/s42003-025-07866-7.
[37]
GRUBER B, STOCKMANN J P, MAREYAM A, et al. A 128-channel receive array for cortical brain imaging at 7 T[J]. Magn Reson Med, 2023, 90(6): 2592-2607. DOI: 10.1002/mrm.29798.

PREV Application value of diffusion-weighted imaging based on deep learning reconstruction algorithm in cranial MRI examination
NEXT Imaging and pathological analysis of a high-grade astrocytoma with piloid features: A case report and literature review
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn