Share:
Share this content in WeChat
X
Review
Research progress in neuroimaging of autism spectrum disorder
ZHANG Shuting  HAN Chao  XU Jingyao  CHEN Xinhui  LI Zhou  WANG Meiyun 

Cite this article as: ZHANG S T, HAN C, XU J Y, et al. Research progress in neuroimaging of autism spectrum disorder[J]. Chin J Magn Reson Imaging, 2025, 16(7): 91-96, 128. DOI:10.12015/issn.1674-8034.2025.07.015.


[Abstract] Autism spectrum disorder (ASD) is characterized by core symptoms of social communication deficits and restricted, repetitive behaviors, with its global prevalence steadily increasing. However, the brain mechanism of ASD is still unclear, and its early diagnosis and early intervention are limited. Neuroimaging is an important research tool for exploring the brain mechanisms of ASD, but few reviews have summarized this research progress. This review primarily summarizes the neuroimaging alterations in ASD, their clinical significance and associated brain mechanisms, in order to support subsequent imaging studies and advance the exploration of brain mechanisms.
[Keywords] autism spectrum disorder;neuroimaging;resting-state functional magnetic resonance imaging;brain mechanisms;magnetic resonance imaging

ZHANG Shuting1, 2   HAN Chao3   XU Jingyao1, 2   CHEN Xinhui3   LI Zhou4   WANG Meiyun2, 5, 6, 7*  

1 Department of Radiology, Zhengzhou University People's Hospital, Zhengzhou 450003, China

2 Department of Radiology, Henan Provincial People's Hospital, Zhengzhou 450003, China

3 Department of Radiology, General Hospital of Pingmei Shenma Medical Group, Pingdingshan 467000, China

4 Department of Neurology, General Hospital of Pingmei Shenma Medical Group, Pingdingshan 467000, China

5 Henan Provincial Engineering Research Center for Magnetic Resonance-guided Focused Ultrasound (Magnetic Wave Knife) Treatment, Zhengzhou 450003, China

6 Henan Key Laboratory for Medical Imaging of Neurological Diseases, Zhengzhou 450003, China

7 Henan Provincial Engineering Technology Research Center for Medical Imaging Diagnosis andTreatment, Zhengzhou 450003, China

Corresponding author: WANG M Y, E-mail: mywang@zzu.edu.cn

Conflicts of interest   None.

Received  2025-04-23
Accepted  2025-07-07
DOI: 10.12015/issn.1674-8034.2025.07.015
Cite this article as: ZHANG S T, HAN C, XU J Y, et al. Research progress in neuroimaging of autism spectrum disorder[J]. Chin J Magn Reson Imaging, 2025, 16(7): 91-96, 128. DOI:10.12015/issn.1674-8034.2025.07.015.

[1]
LORD C, ELSABBAGH M, BAIRD G, et al. Autism spectrum disorder[J]. Lancet (London, England), 2018, 392(10146): 508-520. DOI: 10.1016/S0140-6736(18)31129-2.
[2]
CHIAROTTI F, VENEROSI A. Epidemiology of Autism Spectrum Disorders: A Review of Worldwide Prevalence Estimates Since 2014[J/OL]. Brain Sci, 2020, 10(5): 274 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7288022/. DOI: 10.3390/brainsci10050274.
[3]
CAKIR J, FRYE R E, WALKER S J. The lifetime social cost of autism: 1990—2029[J/OL]. Res Autism Spectr Disord, 2020, 72: 101502 [2025-04-23]. https://linkinghub.elsevier.com/retrieve/pii/S1750946719301904. DOI: 10.1016/j.rasd.2019.101502.
[4]
CIRNIGLIARO L. Head circumference growth in children with Autism Spectrum Disorder: trend and clinical correlates in the first five years of life[J/OL]. Front Psychiatry, 2024, 15: 1431693 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11333207/. DOI: 10.3389/fpsyt.2024.1431693.
[5]
HALLIDAY A R, VUCIC S N, GEORGES B, et al. Heterogeneity and convergence across seven neuroimaging modalities: a review of the autism spectrum disorder literature[J/OL]. Front Psychiatry, 2024, 15: 1474003 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11521827/. DOI: 10.3389/fpsyt.2024.1474003.
[6]
XU M X, JU X D. Abnormal Brain Structure Is Associated with Social and Communication Deficits in Children with Autism Spectrum Disorder: A Voxel-Based Morphometry Analysis[J/OL]. Brain Sci, 2023, 13(5): 779 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10216141/. DOI: 10.3390/brainsci13050779.
[7]
SHEN M D, SWANSON M R, WOLFF J J, et al. Subcortical Brain Development in Autism and Fragile X Syndrome: Evidence for Dynamic, Age- and Disorder-Specific Trajectories in Infancy[J]. Am J Psychiatry, 2022, 179(8): 562-572. DOI: 10.1176/appi.ajp.21090896.
[8]
ANTERAPER S A, GUELL X, HOLLINSHEAD M O, et al. Functional Alterations Associated with Structural Abnormalities in Adults with High-Functioning Autism Spectrum Disorder[J]. Brain Connect, 2020, 10(7): 368-376. DOI: 10.1089/brain.2020.0746.
[9]
WANG H, MA Z H, XU L Z, et al. Developmental brain structural atypicalities in autism: a voxel-based morphometry analysis[J/OL]. Child Adolesc Psychiatry Ment Health, 2022, 16: 7 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8805267/. DOI: 10.1186/s13034-022-00443-4.
[10]
BETHLEHEM R A I, SEIDLITZ J, WHITE S R, et al. Brain charts for the human lifespan[J]. Nature, 2022, 604(7906): 525-533. DOI: 10.1038/s41586-022-04554-y.
[11]
VIDAL-PINEIRO D, PARKER N, SHIN J, et al. Cellular correlates of cortical thinning throughout the lifespan[J/OL]. Sci Rep, 2020, 10: 21803 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7732849/. DOI: 10.1038/s41598-020-78471-3.
[12]
RUTHERFORD S, FRAZA C, DINGA R, et al. Charting brain growth and aging at high spatial precision[J/OL]. eLife, 2022, 11: e72904 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8828052/. DOI: 10.7554/eLife.72904.
[13]
Writing Committee for the Attention-Deficit/Hyperactivity Disorder; Autism Spectrum Disorder; Bipolar Disorder; Major Depressive Disorder; Obsessive-Compulsive Disorder; Schizophrenia ENIGMA Working Groups; Patel Y, Parker N, Shin J, et al. Virtual Histology of Cortical Thickness and Shared Neurobiology in 6 Psychiatric Disorders[J/OL]. JAMA Psychiatry, 2020, 78(1): 47 [2023-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7450410/. DOI: 10.1001/jamapsychiatry.2020.2694.
[14]
ANDREWS D S, DIERS K, LEE J K, et al. Sex differences in trajectories of cortical development in autistic children from 2-13 years of age[J]. Mol. Psychiatry, 2024, 29(11): 3440-3451. DOI: 10.1038/s41380-024-02592-8.
[15]
BRUCE M R, COUCH A C M, GRANT S, et al. Altered behavior, brain structure, and neurometabolites in a rat model of autism-specific maternal autoantibody exposure[J]. Mol Psychiatry, 2023, 28(5): 2136-2147. DOI: 10.1038/s41380-023-02020-3.
[16]
WU C, ZHENG H, WU H, et al. Age-related Brain Morphological Alteration of Medication-naive Boys With High Functioning Autism[J]. Acad Radiol, 2022, 29: S28-S35. DOI: 10.1016/j.acra.2020.10.007.
[17]
ARUTIUNIAN V, GOMOZOVA M, MINNIGULOVA A, et al. Structural brain abnormalities and their association with language impairment in school-aged children with Autism Spectrum Disorder[J/OL]. Sci Rep, 2023, 13: 1172 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9860052/. DOI: 10.1038/s41598-023-28463-w.
[18]
PRETZSCH C M, FLORIS D L, SCHÄFER T, et al. Cross-sectional and longitudinal neuroanatomical profiles of distinct clinical (adaptive) outcomes in autism[J]. Mol Psychiatry, 2023, 28(5): 2158-2169. DOI: 10.1038/s41380-023-02016-z.
[19]
GODEL M, ANDREWS D S, AMARAL D G, et al. Altered Gray-White Matter Boundary Contrast in Toddlers at Risk for Autism Relates to Later Diagnosis of Autism Spectrum Disorder[J/OL]. Front Neurosci, 2021, 15: 669194 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8248433/. DOI: 10.3389/fnins.2021.669194.
[20]
VAN ROOIJ D, ANAGNOSTOU E, ARANGO C, et al. Cortical and Subcortical Brain Morphometry Differences Between Patients With Autism Spectrum Disorder and Healthy Individuals Across the Lifespan: Results From the ENIGMA ASD Working Group[J]. Am J Psychiatry, 2018, 175(4): 359-369. DOI: 10.1176/appi.ajp.2017.17010100.
[21]
SHIOHAMA T, ORTUG A, WARREN J L A, et al. Small Nucleus Accumbens and Large Cerebral Ventricles in Infants and Toddlers Prior to Receiving Diagnoses of Autism Spectrum Disorder[J]. Cereb Cortex (New York, NY), 2021, 32(6): 1200-1211. DOI: 10.1093/cercor/bhab283.
[22]
PIZZOLORUSSO F, PAPARELLA M T, PIZZOLORUSSO I, et al. Magnetic resonance imaging in autism spectrum disorders: clinical and neuroradiological phenotypes[J/OL]. Acta Bio Medica : Atenei Parmensis, 2023, 94(2): e2023027 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10210579/. DOI: 10.23750/abm.v94i2.13434.
[23]
FARAJI R, GANJI Z, ZAMANPOUR S A, et al. Impaired white matter integrity in infants and young children with autism spectrum disorder: What evidence does diffusion tensor imaging provide?[J/OL]. Psychiatry Res Neuroimaging, 2023, 335: 111711 [2025-04-23]. https://linkinghub.elsevier.com/retrieve/pii/S092549272300121X. DOI: 10.1016/j.pscychresns.2023.111711.
[24]
PETERSON B S, LIU J, DANTEC L, et al. Using tissue microstructure and multimodal MRI to parse the phenotypic heterogeneity and cellular basis of autism spectrum disorder[J]. J Child Psychol Psychiatry, 2022, 63(8): 855-870. DOI: 10.1111/jcpp.13531.
[25]
DING N, FU L, QIAN L, et al. The correlation between brain structure characteristics and emotion regulation ability in children at high risk of autism spectrum disorder[J]. Euro Child Adolesc Psychiatry, 2024, 33(9): 3247-3262. DOI: 10.1007/s00787-024-02369-y.
[26]
WANG L, DING S, QIN W, et al. Alterations in the white matter fiber tracts of preschool-aged children with autism spectrum disorder: an automated fiber quantification study[J]. Quant Imaging Med Surg, 2024, 14(12): 9347-9360. DOI: 10.21037/qims-24-950.
[27]
SUI Y V, DONALDSON J, MILES L, et al. Diffusional kurtosis imaging of the corpus callosum in autism[J/OL]. Mol Autism, 2018, 9: 62 [2025-04-23]. https://pubmed.ncbi.nlm.nih.gov/30559954/. DOI: 10.1186/s13229-018-0245-1.
[28]
NAGAI Y, KIRINO E, TANAKA S, et al. Functional connectivity in autism spectrum disorder evaluated using rs-fMRI and DKI[J]. Cereb Cortex, 2024, 34(13): 129-145. DOI: 10.1093/cercor/bhad451.
[29]
HAGHIGHAT H, MIRZAREZAEE M, ARAABI B N, et al. Functional Networks Abnormalities in Autism Spectrum Disorder: Age-Related Hypo and Hyper Connectivity[J]. Brain Topogr, 2021, 34(3): 306-322. DOI: 10.1007/s10548-021-00831-7.
[30]
ZHOU R, SUN C, SUN M, et al. Altered intra- and inter-network connectivity in autism spectrum disorder[J]. Aging (Albany NY), 2024, 16(11): 10004-10015. DOI: 10.18632/aging.205913.
[31]
CHEN B, LINKE A, OLSON L, et al. Greater functional connectivity between sensory networks is related to symptom severity in toddlers with autism spectrum disorder[J]. J Child Psychol Psychiatry, 2021, 62(2): 160-170. DOI: 10.1111/jcpp.13268.
[32]
LAN Z, XU S, WU Y, et al. Alterations of Regional Homogeneity in Preschool Boys With Autism Spectrum Disorders[J/OL]. Front Neurosci, 2021, 15: 644543 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8019812/. DOI: 10.3389/fnins.2021.644543.
[33]
YUE X, ZHANG G, LI X, et al. Brain Functional Alterations in Prepubertal Boys With Autism Spectrum Disorders[J/OL]. Front Hum, 2022, 16: 891965 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9160196/. DOI: 10.3389/fnhum.2022.891965.
[34]
XIE J, ZHANG W, SHEN Y, et al. Abnormal spontaneous brain activity in females with autism spectrum disorders[J/OL]. Front Neurosci, 2023, 17: 1189087 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10379634/. DOI: 10.3389/fnins.2023.1189087.
[35]
MA L, LIU M, XUE K, et al. Abnormal Regional Spontaneous Brain Activities in White Matter in Patients with Autism Spectrum Disorder[J]. Neuroscience, 2022, 490: 1-10. DOI: 10.1016/j.neuroscience.2022.02.022.
[36]
LI J, CHEN X, ZHENG R, et al. Altered Cerebellum Spontaneous Activity in Juvenile Autism Spectrum Disorders Associated with Clinical Traits[J]. J Autism and Dev Disord, 2022, 52(6): 2497-2504. DOI: 10.1007/s10803-021-05167-6.
[37]
XUE Y, DONG H Y, FENG J Y, et al. Parent–child interaction related to brain functional alterations and development outcomes in autism spectrum disorder: A study based on resting state-fMRI[J/OL]. Res Dev Disabil, 2024, 147: 104701 [2025-04-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10229713/. DOI: 10.1016/j.ridd.2024.104701.
[38]
DENG S, TAN S, GUO C, et al. Impaired effective functional connectivity in the social preference of children with autism spectrum disorder[J/OL]. Front Neurosci, 2024, 18: 1391191 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11169607/. DOI: 10.3389/fnins.2024.1391191.
[39]
LUO Z, YUE X P, GAO Z H, et al. The differences between Asperger's syndrome and high functioning autism in brain network: A resting-state fMRI graph theory study[J]. Chin J Magn Reson Imaging, 2024, 15(7): 39-45. DOI: 10.12015/issn.1674-8034.2024.07.007.
[40]
CARTER C S, BEARDEN C E, BULLMORE E T, et al. Enhancing the Informativeness and Replicability of Imaging Genomics Studies[J]. Biol psychiatry, 2017, 82(3): 157-164. DOI: 10.1016/j.biopsych.2016.08.019.
[41]
PATTERSON G, CUMMINGS K K, JUNG J, et al. Effects of sensory distraction and salience priming on emotion identification in autism: an fMRI study[J/OL]. J Neurodev Disord, 2021, 13: 42 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8461948/. DOI: 10.1186/s11689-021-09391-0.
[42]
LAWRENCE K E, HERNANDEZ L M, EILBOTT J, et al. Neural responsivity to social rewards in autistic female youth[J/OL]. Transl Psychiatry, 2020, 10: 178 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7266816/. DOI: 10.1038/s41398-020-0824-8.
[43]
RUBENSTEIN J L R, MERZENICH M M. Model of autism: increased ratio of excitation/inhibition in key neural systems[J]. Genes Brain Behav, 2003, 2(5): 255-267. DOI: 10.1034/j.1601-183x.2003.00037.
[44]
THOMSON A R, PASANTA D, ARICHI T, et al. Neurometabolite differences in Autism as assessed with Magnetic Resonance Spectroscopy: a systematic review and meta-analysis[J/OL]. Neurosci Biobehav Rev, 2024, 162: 105728 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11602446/. DOI: 10.1016/j.neubiorev.2024.105728.
[45]
OYA M, MATSUOKA K, KUBOTA M, et al. Increased glutamate and glutamine levels and their relationship to astrocytes and dopaminergic transmissions in the brains of adults with autism[J/OL]. Sci Rep, 2023, 13: 11655 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10356952/. DOI: 10.1038/s41598-023-38306-3.
[46]
HEGARTY J P. Cerebro-Cerebellar Functional Connectivity is Associated with Cerebellar Excitation-Inhibition Balance in Autism Spectrum Disorder[J]. J Autism Dev Disord, 2018, 48(10): 3460-3473. DOI: 10.1007/s10803-018-3613-y.
[47]
NAIR N, HEGARTY J P, CIRSTEA C M, et al. Relationship Between MR Spectroscopy-Detected Glutamatergic Neurometabolites and Changes in Social Behaviors in a Pilot Open-Label Trial of Memantine for Adults With Autism Spectrum Disorder[J/OL]. Front Psychiatry, 2022, 13: 898006 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9355704/. DOI: 10.3389/fpsyt.2022.898006.
[48]
KANG Q Q, LI X, TONG G L, et al. Magnetic resonance spectroscopy features of the thalamus and the cerebellum and their association with clinical features in children with autism spectrum disorder: a prospective study[J]. Chin J Contemp Pediatr, 2021, 23(12): 1250-1255. DOI: 10.7499/j.issn.1008-8830.2108137.
[49]
SUBTIRELU R, WRITER M, TEICHNER E, et al. Potential Neuroimaging Biomarkers for Autism Spectrum Disorder[J]. PET Clinics, 2025, 20(1): 25-37. DOI: 10.1016/j.cpet.2024.09.010.
[50]
MURAYAMA C, IWABUCHI T, KATO Y, et al. Extrastriatal dopamine D2/3 bindingreceptor, connectivityfunctional, and autism socio-communicational deficits: a PET and fMRI study[J/OL]. Mol Psychiatry, 2022, 27(4): 2106-2113. DOI: 10.1038/s41380-022-01464-3.
[51]
CHENG Z, TANG S L, ZHANG Y, et al. Three-dimensional arterial spin labeling perfusion imaging shows cerebral blood flow decline in some brain regions in preschool autistic children[J/OL]. Chin J Magn Reson Imag, 2022, 13(1): 11-14, 20. DOI: 10.12015/issn.1674-8034.2022.01.003.
[52]
LIN F, HU Y, HUANG W, et al. Resting-state coupling between HbO and Hb measured by fNIRS in autism spectrum disorder[J/OL]. J Biophotonics, 2023, 16(3): e202200265 [2025-04-23]. https://onlinelibrary.wiley.com/doi/10.1002/jbio.202200265. DOI: 10.1002/jbio.202200265.
[53]
KOC E, KALKAN H, BILGEN S. Autism Spectrum Disorder Detection by Hybrid Convolutional Recurrent Neural Networks from Structural and Resting State Functional MRI Images[J/OL]. Autism Res Treat, 2023, 2023: 4136087 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10752691/. DOI: 10.1155/2023/4136087.
[54]
KAUR P, KAUR A. Review of Progress in Diagnostic Studies of Autism Spectrum Disorder Using Neuroimaging[J/OL]. Interdiscip Sci Computat Life Sci, 2023 [2025-04-23]. https://link.springer.com/10.1007/s12539-022-00548-6. DOI: 10.1007/s12539-022-00548-6.
[55]
KIM J I, BANG S, YANG J J, et al. Classification of Preschoolers with Low-Functioning Autism Spectrum Disorder Using Multimodal MRI Data[J/OL]. J Autism Dev Disord, 2023, 53(1): 25-37. DOI: 10.1007/s10803-021-05368-z.
[56]
LIU M, YU W, XU D, et al. Diagnosis for autism spectrum disorder children using T1-based gray matter and arterial spin labeling-based cerebral blood flow network metrics[J/OL]. Front Neurosci, 2024, 18: 1356241 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11061487/. DOI: 10.3389/fnins.2024.1356241.

PREV Myxoinflammatory fibroblastic sarcoma of the hip: One case report
NEXT Research progress of dynamic functional connectivity in adolescent depression
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn