Share:
Share this content in WeChat
X
Review
Research progress of dynamic functional connectivity in adolescent depression
CAI Wenyu  HE Changjing  TIAN Yu  LIU Songjiang 

Cite this article as: CAI W Y, HE C J, TIAN Y, et al. Research progress of dynamic functional connectivity in adolescent depression[J]. Chin J Magn Reson Imaging, 2025, 16(7): 97-101. DOI:10.12015/issn.1674-8034.2025.07.016.


[Abstract] Depression is a severe mental disorder that poses a significant threat to the physical and mental health of adolescents. Its underlying neuropathological mechanisms, particularly the core neural circuits associated with abnormalities in dynamic functional networks, remain incompletely elucidated. Dynamic functional connectivity (dFC) can capture the dynamic characteristics of brain functional networks over time, which is crucial for a deeper understanding of the occurrence and development mechanisms of adolescent depression. However, the application of dFC analysis methods in adolescent depression has not yet been systematically reviewed and summarized. This article reviews the important results, limitations, and development prospects of dFC analysis methods such as sliding window correlation (SWC), co-activation patterns (CAPs), dynamic independent component analysis (dyn-ICA), and dynamic causal modeling (DCM) in adolescent depression research from the perspectives of technical principles and clinical applications. It provides a new perspective for further understanding the neuropathological mechanisms of adolescent depression, exploring new imaging markers, and potential clinical treatment plans. This article suggests that analyzing the dynamic features of adolescent brain networks can provide new ideas for developing precise diagnosis and treatment strategies for adolescent depression.
[Keywords] depression;adolescent;magnetic resonance imaging;functional magnetic resonance imaging;dynamic functional connectivity;brain network

CAI Wenyu1   HE Changjing1   TIAN Yu2   LIU Songjiang1*  

1 Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China

2 Department of Radiology, Chongqing Tongliang District People's Hospital, Chongqing 402560, China

Corresponding author: LIU S J, E-mail: haitliu0817@163.com

Conflicts of interest   None.

Received  2025-04-21
Accepted  2025-07-07
DOI: 10.12015/issn.1674-8034.2025.07.016
Cite this article as: CAI W Y, HE C J, TIAN Y, et al. Research progress of dynamic functional connectivity in adolescent depression[J]. Chin J Magn Reson Imaging, 2025, 16(7): 97-101. DOI:10.12015/issn.1674-8034.2025.07.016.

[1]
HERRMAN H, PATEL V, KIELING C, et al. Time for united action on depression: a Lancet–World Psychiatric Association Commission[J]. Lancet, 2022, 399(10328): 957-1022. DOI: 10.1016/S0140-6736(21)02141-3.
[2]
THAPAR A, EYRE O, PATEL V, et al. Depression in young people[J]. Lancet, 2022, 400(10352): 617-631. DOI: 10.1016/S0140-6736(22)01012-1.
[3]
YANG C, LV J, KONG X, et al. Global, regional and national burdens of depression in adolescents and young adults aged 10–24 years, from 1990 to 2019: findings from the 2019 Global Burden of Disease study[J]. Br J Psychiatry, 2024, 225(2): 311-320. DOI: 10.1192/bjp.2024.69.
[4]
DESAI BOSTRÖM A E, CARS T, HELLNER C, et al. Recovery and Recurrence From Major Depression in Adolescence and Adulthood[J]. Acta Psychiatr Scand, 2025, 151(5): 625-633. DOI: 10.1111/acps.13785.
[5]
WEAVERS B, HERON J, THAPAR A K, et al. The antecedents and outcomes of persistent and remitting adolescent depressive symptom trajectories: a longitudinal, population-based English study[J]. Lancet Psychiatry, 2021, 8(12): 1053-1061. DOI: 10.1016/s2215-0366(21)00281-9.
[6]
CHOW W W, SEGHOUANE A, SEGHIER M L. A Statistical Characterization of Dynamic Brain Functional Connectivity[J/OL]. Hum Brain Mapp, 2025, 46(2): e70145 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/38574869/. DOI: 10.1002/hbm.70145.
[7]
TSE N Y, RATHEESH A, GANESAN S, et al. Functional dysconnectivity in youth depression: Systematic review, meta‐analysis, and network-based integration[J/OL]. Neurosci Biobehav Rev, 2023, 153: 105394 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/37739327/. DOI: 10.1016/j.neubiorev.2023.105394.
[8]
CALHOUN V, MILLER R, PEARLSON G, et al. The Chronnectome: Time-Varying Connectivity Networks as the Next Frontier in fMRI Data Discovery[J]. Neuron, 2014, 84(2): 262-274. DOI: 10.1016/j.neuron.2014.10.015.
[9]
PATIL A U, GHATE S, MADATHIL D, et al. Static and dynamic functional connectivity supports the configuration of brain networks associated with creative cognition[J/OL]. Sci Rep, 2021, 11(1): 165 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/33420212/. DOI: 10.1038/s41598-020-80293-2.
[10]
HOHEISEL L, KAMBEITZ-ILANKOVIC L, WENZEL J, et al. Alterations of Functional Connectivity Dynamics in Affective and Psychotic Disorders[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2024, 9(8): 765-776. DOI: 10.1016/j.bpsc.2024.02.013.
[11]
WANG H, CHEN J, YUAN Z, et al. NHSMM-MAR-sdNC: A novel data-driven computational framework for state-dependent effective connectivity analysis[J/OL]. Med Image Anal, 2024, 97: 103290 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/39094462/. DOI: 10.1016/j.media.2024.103290.
[12]
CHEN B, SU T, YANG M, et al. Static and dynamic functional connectivity of the habenula in late-life depression patient with suicidal ideation[J]. J Affect Disord, 2024, 356: 499-506. DOI: 10.1016/j.jad.2024.03.161.
[13]
LI Y, RAN Y, YAO M, et al. Altered static and dynamic functional connectivity of the default mode network across epilepsy subtypes in children: A resting-state fMRI study[J/OL]. Neurobiol Dis, 2024, 192: 106425 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/38296113/. DOI: 10.1016/j.nbd.2024.106425.
[14]
ZHOU J, JIAO X, HU Q, et al. Abnormal Static and Dynamic Local Functional Connectivity in First-Episode Schizophrenia: A Resting-State fMRI Study[J]. IEEE Trans Neural Syst Rehabil Eng, 2024, 32: 1023-1033. DOI: 10.1109/TNSRE.2024.3368697.
[15]
SHEN B, YAO Q, ZHANG Y, et al. Static and Dynamic Functional Network Connectivity in Parkinson's Disease Patients With Postural Instability and Gait Disorder[J/OL]. CNS Neurosci Ther, 2024, 30(11): e70115 [2025-4-20]. https://pubmed.ncbi.nlm.nih.gov/39523453/. DOI: 10.1111/cns.70115.
[16]
ZANG F, LIU X, FAN D, et al. Dynamic functional network connectivity and its association with lipid metabolism in Alzheimer's disease[J/OL]. CNS Neurosci Ther, 2024, 30(9): e70029 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/39302036/. DOI: 10.1111/cns.70029.
[17]
LUO L, YOU W, DELBELLO M P, et al. Recent advances in psychoradiology[J/OL]. Phys Med Biol, 2022, 67(23): 23TR01 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/36279868/. DOI: 10.1088/1361-6560/ac9d1e.
[18]
MOKHTARI F, AKHLAGHI M I, SIMPSON S L, et al. Sliding window correlation analysis: Modulating window shape for dynamic brain connectivity in resting state[J]. Neuroimage, 2019, 189: 655-666. DOI: 10.1016/j.neuroimage.2019.02.001.
[19]
CHEN Y, HAN S Q, CHEN Y, et al. Analysis of abnormal dynamic functional connectivity of the raphe nucleus in adolescent patients with first-episode depression on resting-state functional magnetic resonance imaging[J]. Zhonghua Yi Xue Za Zhi, 2021, 101(37): 3018-3023. DOI: 10.3760/cma.j.cn112137-20210412-00870.
[20]
LIU M, ZHANG H, LIU M, et al. Randomizing Human Brain Function Representation for Brain Disease Diagnosis[J]. IEEE Trans Med Imaging, 2024, 43(7): 2537-2546. DOI: 10.1109/tmi.2024.3368064.
[21]
LONG Y, LIU X, LIU Z. Temporal Stability of the Dynamic Resting-State Functional Brain Network: Current Measures, Clinical Research Progress, and Future Perspectives[J/OL]. Brain Sci, 2023, 13(3): 429 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/36979239/. DOI: 10.3390/brainsci13030429.
[22]
LONG Y, OUYANG X, YAN C, et al. Evaluating test-retest reliability and sex‐/age‐related effects on temporal clustering coefficient of dynamic functional brain networks[J]. Hum Brain Mapp, 2023, 44(6): 2191-2208. DOI: 10.1002/hbm.26202.
[23]
ZHENG R, CHEN Y, JIANG Y, et al. Abnormal dynamic functional connectivity in first-episode, drug-naïve adolescents with major depressive disorder[J]. J Neurosci Res, 2022, 100(7): 1463-1475. DOI: 10.1002/jnr.25047.
[24]
LI X, HUANG Y, LIU M, et al. Childhood trauma is linked to abnormal static-dynamic brain topology in adolescents with major depressive disorder[J/OL]. Int J Clin Health Psychol, 2023, 23(4): 100401 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/37584055/. DOI: 10.1016/j.ijchp.2023.100401.
[25]
WANG R, LIU M, CHENG X, et al. Segregation, integration, and balance of large-scale resting brain networks configure different cognitive abilities[J/OL]. Proc Natl Acad Sci U S A, 2021, 118(23): e2022288118 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/34074762/. DOI: 10.1073/pnas.2022288118.
[26]
ALLEN E A, DAMARAJU E, PLIS S M, et al. Tracking Whole-Brain Connectivity Dynamics in the Resting State[J]. Cereb Cortex, 2014, 24(3): 663-676. DOI: 10.1093/cercor/bhs352.
[27]
KANG L, WANG W, ZHANG N, et al. Anhedonia and dysregulation of an angular gyrus-centred and dynamic functional network in adolescent-onset depression[J]. J Affect Disord, 2023, 324: 82-91. DOI: 10.1016/j.jad.2022.12.057.
[28]
XU M, ZHANG X, LI Y, et al. Identification of suicidality in patients with major depressive disorder via dynamic functional network connectivity signatures and machine learning[J/OL]. Transl Psychiatry, 2022, 12(1): 383 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/36097160/. DOI: 10.1038/s41398-022-02147-x.
[29]
JAVAHERIPOUR N, COLIC L, OPEL N, et al. Altered brain dynamic in major depressive disorder: state and trait features[J/OL]. Transl Psychiatry, 2023, 13(1): 261 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/37460460/. DOI: 10.1038/s41398-023-02540-0.
[30]
IRAJI A, FAGHIRI A, FU Z, et al. Multi-spatial-scale dynamic interactions between functional sources reveal sex-specific changes in schizophrenia[J]. Netw Neurosci, 2022, 6(2): 357-381. DOI: 10.1162/netn_a_00196.
[31]
WU B, LONG X, CAO Y, et al. Abnormal intrinsic brain functional network dynamics in first-episode drug-naïve adolescent major depressive disorder[J]. Psychol Med, 2024, 54(8): 1758-1767. DOI: 10.1017/S0033291723003719.
[32]
SEN B, CULLEN K R, PARHI K K. Classification of Adolescent Major Depressive Disorder Via Static and Dynamic Connectivity[J]. IEEE J Biomed Health Inform, 2021, 25(7): 2604-2614. DOI: 10.1109/JBHI.2020.3043427.
[33]
FAN L, ZHONG Q, QIN J, et al. Brain parcellation driven by dynamic functional connectivity better capture intrinsic network dynamics[J]. Hum Brain Mapp, 2021, 42(5): 1416-1433. DOI: 10.1002/hbm.25303.
[34]
ELLIS C A, MILLER R L, CALHOUN V D. Explainable fuzzy clustering framework reveals divergent default mode network connectivity dynamics in schizophrenia[J/OL]. Front Psychiatry, 2024, 15: 1165424 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/38495909/. DOI: 10.3389/fpsyt.2024.1165424.
[35]
DU Y, FANG S, HE X, et al. A survey of brain functional network extraction methods using fMRI data[J]. Trends Neurosci, 2024, 47(8): 608-621. DOI: 10.1016/j.tins.2024.05.011.
[36]
FAGHIRI A, YANG K, FARIA A, et al. Frequency modulation increases the specificity of time-resolved connectivity: A resting-state fMRI study[J]. Netw Neurosci, 2024, 8(3): 734-761. DOI: 10.1162/netn_a_00372.
[37]
LONG Z, LIU X, NIU Y, et al. Improved dynamic functional connectivity estimation with an alternating hidden Markov model[J]. Cogn Neurodyn, 2023, 17(5): 1381-1398. DOI: 10.1007/s11571-022-09874-3.
[38]
MATSUI T, PHAM T Q, JIMURA K, et al. On co-activation pattern analysis and non-stationarity of resting brain activity[J/OL]. Neuroimage, 2022, 249: 118904 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/35031473/. DOI: 10.1016/j.neuroimage.2022.118904.
[39]
MALTBIE E, YOUSEFI B, ZHANG X, et al. Comparison of Resting-State Functional MRI Methods for Characterizing Brain Dynamics[J/OL]. Front Neural Circuits, 2022, 16: 681544 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/35444518/. DOI: 10.3389/fncir.2022.681544.
[40]
KAISER R H, KANG M S, LEW Y, et al. Abnormal frontoinsular-default network dynamics in adolescent depression and rumination: a preliminary resting-state co-activation pattern analysis[J]. Neuropsychopharmacology, 2019, 44(9): 1604-1612. DOI: 10.1038/s41386-019-0399-3.
[41]
KIM J, ANDREWS-HANNA J R, EISENBARTH H, et al. A dorsomedial prefrontal cortex-based dynamic functional connectivity model of rumination[J/OL]. Nat Commun, 2023, 14(1): 3540 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/37321986/. DOI: 10.1038/s41467-023-39142-9.
[42]
QIU H, ZHANG L, GAO Y, et al. Functional connectivity of the default mode network in first-episode drug-naïve patients with major depressive disorder[J]. J Affect Disord, 2024, 361: 489-496. DOI: 10.1016/j.jad.2024.06.063.
[43]
ZHANG W, CAI K, XIONG X, et al. Alterations of triple network dynamic connectivity and repetitive behaviors after mini-basketball training program in children with autism spectrum disorder[J/OL]. Sci Rep, 2025, 15(1): 2629 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/39838077/. DOI: 10.1038/s41598-025-87248-5.
[44]
ZHANG H, TAO Y, XU H, et al. Associations between childhood chronic stress and dynamic functional connectivity in drug-naïve, first-episode adolescent MDD[J]. J Affect Disord, 2022, 299: 85-92. DOI: 10.1016/j.jad.2021.11.050.
[45]
RAN M, ZHANG H, JIN M, et al. Dynamic functional connectivity patterns predict early antidepressant treatment response in drug-naïve, first-episode adolescent MDD[J/OL]. Front Neurosci, 2025, 19: 1487754 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/39963258/. DOI: 10.3389/fnins.2025.1487754.
[46]
MA L, BRAUN S E, STEINBERG J L, et al. Effect of scanning duration and sample size on reliability in resting state fMRI dynamic causal modeling analysis[J/OL]. Neuroimage, 2024, 292: 120604 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/38604537/. DOI: 10.1016/j.neuroimage.2024.120604.
[47]
MUSGROVE D R, EBERLY L E, KLIMES-DOUGAN B, et al. Impaired Bottom-Up Effective Connectivity Between Amygdala and Subgenual Anterior Cingulate Cortex in Unmedicated Adolescents with Major Depression: Results from a Dynamic Causal Modeling Analysis[J]. Brain Connect, 2015, 5(10): 608-619. DOI: 10.1089/brain.2014.0312.
[48]
WILLINGER D, KARIPIDIS I I, HÄBERLING I, et al. Deficient prefrontal-amygdalar connectivity underlies inefficient face processing in adolescent major depressive disorder[J/OL]. Transl Psychiatry, 2022, 12(1): 195 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/35538052/. DOI: 10.1038/s41398-022-01955-5.
[49]
WILLINGER D, HÄBERLING I, ILIOSKA I, et al. Weakened effective connectivity between salience network and default mode network during resting state in adolescent depression[J/OL]. Front Psychiatry, 2024, 15: 1386984 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/38638415/. DOI: 10.3389/fpsyt.2024.1386984.
[50]
KUNG P H, DAVEY C G, HARRISON B J, et al. Frontoamygdalar Effective Connectivity in Youth Depression and Treatment Response[J]. K Biol Psychiatry, 2023, 94(12): 959-968. DOI: 10.1016/j.biopsych.2023.06.009.
[51]
YUAN B, XIE H, WANG Z, et al. The domain-separation language network dynamics in resting state support its flexible functional segregation and integration during language and speech processing[J/OL]. Neuroimage, 2023, 274: 120132 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/37105337/. DOI: 10.1016/j.neuroimage.2023.120132.
[52]
CHOE A S, NEBEL M B, BARBER A D, et al. Comparing test-retest reliability of dynamic functional connectivity methods[J]. Neuroimage, 2017, 158: 155-175. DOI: 10.1016/j.neuroimage.2017.07.005.
[53]
THAPALIYA B, MILLER R, CHEN J, et al. DSAM: A deep learning framework for analyzing temporal and spatial dynamics in brain networks[J/OL]. Med Image Anal, 2025, 101: 103462 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/39892220/. DOI: 10.1016/j.media.2025.103462.
[54]
BASILE G A, QUARTARONE A, CERASA A, et al. Track‐Weighted Dynamic Functional Connectivity Profiles and Topographic Organization of the Human Pulvinar[J/OL]. Hum Brain Mapp, 2024, 45(17): e70062 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/39639553/. DOI: 10.1002/hbm.70062.
[55]
TORABI M, MITSIS G D, POLINE J. On the variability of dynamic functional connectivity assessment methods[J/OL]. Gigascience, 2024, 13: giae009 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/38587470/. DOI: 10.1093/gigascience/giae009.

PREV Research progress in neuroimaging of autism spectrum disorder
NEXT The mechanisms of rTMS treatment for major depressive disorder through structural-functional MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn