Share:
Share this content in WeChat
X
Review
The mechanisms of rTMS treatment for major depressive disorder through structural-functional MRI
LIU Jingwen  HU Liangbo 

Cite this article as: LIU J W, HU L B. The mechanisms of rTMS treatment for major depressive disorder through structural-functional MRI[J]. Chin J Magn Reson Imaging, 2025, 16(7): 102-108. DOI:10.12015/issn.1674-8034.2025.07.017.


[Abstract] Major depressive disorder (MDD) is a prevalent psychiatric condition associated with alterations in brain structural and functional connectivity, which significantly affects physical, psychological, and social functioning. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive neuromodulation technique that applies magnetic pulses to the cortical regions, has shown significant efficacy in the treatment of MDD. However, the specific mechanisms by which it exerts its antidepressant effects through regulating brain structure and function remain unclear. Although multimodal MRI has provided valuable tools for revealing the neuroregulatory mechanisms of rTMS, existing reviews mostly focus on separate analyses of structural or functional changes, without systematically integrating how rTMS affects the structural-functional coupling of the brain. Therefore, we systematically summarize the research progress on rTMS-induced changes in the brain's structure-function coupling during MDD treatment, based on structural-functional MRI. It aims to provide new perspectives for optimizing the selection of stimulation targets and offers methodological suggestions for the multi-scale objective evaluation of rTMS intervention effects. We propose that a deeper understanding of the regulatory mechanisms of rTMS on brain structure-function coupling is a core to achieving precision in MDD treatment and objectivity in efficacy evaluation.
[Keywords] major depressive disorder;magnetic resonance imaging;multimodal;repetitive transcranial magnetic stimulation;mechanism

LIU Jingwen   HU Liangbo*  

Department of Radiology, the Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China

Corresponding author: HU L B, E-mail: 700056@hospital.cqmu.edu.cn

Conflicts of interest   None.

Received  2025-04-07
Accepted  2025-06-10
DOI: 10.12015/issn.1674-8034.2025.07.017
Cite this article as: LIU J W, HU L B. The mechanisms of rTMS treatment for major depressive disorder through structural-functional MRI[J]. Chin J Magn Reson Imaging, 2025, 16(7): 102-108. DOI:10.12015/issn.1674-8034.2025.07.017.

[1]
VOS T, LIM S S, ABBAFATI C, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the global burden of disease study 2019[J]. Lancet, 2020, 396(10258): 1204-1222. DOI: 10.1016/S0140-6736(20)30925-9.
[2]
MALHI G S, MANN J J. Depression[J]. Lancet, 2018, 392(10161): 2299-2312. DOI: 10.1016/S0140-6736(18)31948-2.
[3]
World Health Organization. The global burden of disease: 2004 update[EB/OL]. [2024-11-20]. https://iris.who.int/handle/10665/43942.
[4]
MCINTYRE R S, ALSUWAIDAN M, BAUNE B T, et al. Treatment‐resistant depression: Definition, prevalence, detection, management, and investigational interventions[J]. World Psychiatry, 2023, 22(3): 394-412. DOI: 10.1002/wps.21120.
[5]
WU C L, LU T H, CHANG W H, et al. Role of the insula in rTMS response for depression[J/OL]. J Affect Disord, 2025, 370: 538-546 [2024-11-20]. https://linkinghub.elsevier.com/retrieve/pii/S0165032724019062. DOI: 10.1016/j.jad.2024.11.043.
[6]
OATHES D J, DUPRAT R J P, REBER J, et al. Non-invasively targeting, probing and modulating a deep brain circuit for depression alleviation[J]. Nature Mental Health, 2023, 1(12): 1033-1042. DOI: 10.1038/s44220-023-00165-2.
[7]
FLINKENFLÜGEL K, MEINERT S, HIRTSIEFER C, et al. Associations between white matter microstructure and cognitive decline in major depressive disorder versus controls in germany: A prospective case-control cohort study[J]. Lancet Psychiatry, 2024, 11(11): 899-909. DOI: 10.1016/S2215-0366(24)00291-8.
[8]
NOTHDURFTER D, JAWINSKI P, MARKETT S. White matter tract integrity is reduced in depression and in individuals with genetic liability to depression[J]. Biol Psychiatry, 2024, 95(12): 1063-1071. DOI: 10.1016/j.biopsych.2023.11.028.
[9]
JIANG J, LI L, LIN J, et al. A voxel-based meta-analysis comparing medication-naive patients of major depression with treated longer-term ill cases[J/OL]. Neurosci Biobehav Rev, 2023, 144: 104991 [2024-12-26]. https://linkinghub.elsevier.com/retrieve/pii/S0149763422004808. DOI: 10.1016/j.neubiorev.2022.104991.
[10]
GALLO S, EL-GAZZAR A, ZHUTOVSKY P, et al. Functional connectivity signatures of major depressive disorder: Machine learning analysis of two multicenter neuroimaging studies[J]. Mol Psychiatry, 2023, 28(7): 3013-3022. DOI: 10.1038/s41380-023-01977-5.
[11]
FINKELSTEIN O, LEVAKOV G, KAPLAN A, et al. Deep learning‐based BMI inference from structural brain MRI reflects brain alterations following lifestyle intervention[J/OL]. Hum Brain Mapp, 2024, 45(3): e26595 [2025-05-28]. https://onlinelibrary.wiley.com/doi/10.1002/hbm.26595. DOI: 10.1002/hbm.26595.
[12]
MILLEVERT C, VIDAS-GUSCIC N, ADHIKARI M H, et al. Tracking brain maturation in vivo: Functional connectivity, white matter integrity, and synaptic density in developing mice[J/OL]. Ebiomedicine, 2025, 115: 105720 [2025-05-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12032915. DOI: 10.1016/j.ebiom.2025.105720.
[13]
SCHLEIFER C H. Brainwide risk scores: An example of psychiatric risk prediction from resting-state functional magnetic resonance imaging[J/OL]. Biol Psychiatry, 2024, 95(7): e17-e19 [2025-05-28]. https://www.biologicalpsychiatryjournal.com/article/S0006-3223(24)00032-5/fulltext. DOI: 10.1016/j.biopsych.2024.01.006.
[14]
LONG J Y, QIN K, PAN N, et al. Impaired topology and connectivity of grey matter structural networks in major depressive disorder: Evidence from a multi-site neuroimaging data-set[J]. Br J Psychiatry, 2024, 224(5): 170-178. DOI: 10.1192/bjp.2024.41.
[15]
GRUBER M, MAURITZ M, MEINERT S, et al. Cognitive performance and brain structural connectome alterations in major depressive disorder[J]. Psychol Med, 2023, 53(14): 6611-6622. DOI: 10.1017/S0033291722004007.
[16]
WISE T, RADUA J, VIA E, et al. Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: Evidence from voxel-based meta-analysis[J]. Mol Psychiatry, 2017, 22(10): 1455-1463. DOI: 10.1038/mp.2016.72.
[17]
LONG X, LI L, WANG X, et al. Gray matter alterations in adolescent major depressive disorder and adolescent bipolar disorder[J/OL]. J Affect Disord, 2023, 325: 550-563 [2024-11-20]. https://linkinghub.elsevier.com/retrieve/pii/S0165032723000599. DOI: 10.1016/j.jad.2023.01.049.
[18]
LIANG J, YU Q, LIU Y, et al. Gray matter abnormalities in patients with major depressive disorder and social anxiety disorder: A voxel-based meta-analysis[J]. Brain Imaging Behav, 2023, 17(6): 749-763. DOI: 10.1007/s11682-023-00797-z.
[19]
LILOIA D, ZAMFIRA D A, TANAKA M, et al. Disentangling the role of gray matter volume and concentration in autism spectrum disorder: A meta-analytic investigation of 25 years of voxel-based morphometry research[J/OL]. Neurosci Biobehav Rev, 2024, 164: 105791 [2024-11-20]. https://linkinghub.elsevier.com/retrieve/pii/S0149763424002604. DOI: 10.1016/j.neubiorev.2024.105791.
[20]
SCHMAAL L, HIBAR D P, SÄMANN P G, et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA major depressive disorder working group[J]. Mol Psychiatry, 2017, 22(6): 900-909. DOI: 10.1038/mp.2016.60.
[21]
FORTEA L, ORTUÑO M, DE PRISCO M, et al. Atlas of gray matter volume differences across psychiatric conditions: A systematic review with a novel meta-analysis that considers co-occurring disorders[J/OL]. Biol Psychiatry, 2024: S0006-3223(24)1729-3 [2024-11-20]. https://linkinghub.elsevier.com/retrieve/pii/S0006-3223(24)01729-3. DOI: 10.1016/j.biopsych.2024.10.020.
[22]
MATSUMOTO J, FUKUNAGA M, MIURA K, et al. Cerebral cortical structural alteration patterns across four major psychiatric disorders in 5549 individuals[J]. Mol Psychiatry, 2023, 28(11): 4915-4923. DOI: 10.1038/s41380-023-02224-7.
[23]
YI Z, XIA L, YI J, et al. Structural brain changes in the anterior cingulate cortex of major depressive disorder individuals with suicidal ideation: Evidence from the REST-meta-MDD project[J/OL]. Psychol Med, 2025, 55: e24 [2025-04-12]. https://www.cambridge.org/core/product/identifier/S0033291724003283/type/journal_article. DOI: 10.1017/S0033291724003283.
[24]
OKADA N, FUKUNAGA M, MIURA K, et al. Subcortical volumetric alterations in four major psychiatric disorders: a mega-analysis study of 5604 subjects and a volumetric data-driven approach for classification[J]. Mol Psychiatry, 2023, 28(12): 5206-5216. DOI: 10.1038/s41380-023-02141-9.
[25]
BROSCH K, STEIN F, SCHMITT S, et al. Reduced hippocampal gray matter volume is a common feature of patients with major depression, bipolar disorder, and schizophrenia spectrum disorders[J]. Mol Psychiatry, 2022, 27(10): 4234-4243. DOI: 10.1038/s41380-022-01687-4.
[26]
SERRA-BLASCO M, RADUA J, SORIANO-MAS C, et al. Structural brain correlates in major depression, anxiety disorders and post-traumatic stress disorder: A voxel-based morphometry meta-analysis[J]. Neurosci Biobehav Rev, 2021, 129: 269-281. DOI: 10.1016/j.neubiorev.2021.07.002.
[27]
HAN K M, CHOI S, JUNG J, et al. Cortical thickness, cortical and subcortical volume, and white matter integrity in patients with their first episode of major depression[J]. J Affect Disord, 2014, 155: 42-48. DOI: 10.1016/j.jad.2013.10.021.
[28]
BAN M, HE J, WANG D, et al. Association between segmental alterations of white matter bundles and cognitive performance in first-episode, treatment-naïve young adults with major depressive disorder[J]. J Affect Disord, 2024, 358: 309-317. DOI: 10.1016/j.jad.2024.05.001.
[29]
GERAETS A F J, KÖHLER S, VERGOOSSEN L W, et al. The association of white matter connectivity with prevalence, incidence and course of depressive symptoms: The maastricht study[J]. Psychol Med, 2022, 53(12): 5558-5568. DOI: 10.1017/S0033291722002768.
[30]
LIU Y, LI M, ZHANG B, et al. Transcriptional patterns of amygdala functional connectivity in first-episode, drug-naïve major depressive disorder[J/OL]. Transl Psychiatry, 2024, 14(1): 351 [2025-04-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365938. DOI: 10.1038/s41398-024-03062-z.
[31]
HOSSEIN S, COOPER J A, DEVRIES B A M, et al. Effects of acute stress and depression on functional connectivity between prefrontal cortex and the amygdala[J]. Mol Psychiatry, 2023, 28(11): 4602-4612. DOI: 10.1038/s41380-023-02056-5.
[32]
KANG L, WANG W, ZHANG N, et al. Anhedonia and dysregulation of an angular gyrus-centred and dynamic functional network in adolescent-onset depression[J]. J Affect Disord, 2023, 324: 82-91. DOI: 10.1016/j.jad.2022.12.057.
[33]
SUN J, MA Y, GUO C, et al. Distinct patterns of functional brain network integration between treatment-resistant depression and non treatment-resistant depression: A resting-state functional magnetic resonance imaging study[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2023, 120: 110621 [2025-04-07]. https://linkinghub.elsevier.com/retrieve/pii/S0278584622001130. DOI: 10.1016/j.pnpbp.2022.110621.
[34]
LYNCH C J, ELBAU I G, NG T, et al. Frontostriatal salience network expansion in individuals in depression[J]. Nature, 2024, 633(8030): 624-633. DOI: 10.1038/s41586-024-07805-2.
[35]
SIEGEL-RAMSAY J E, BERTOCCI M A, WU B, et al. Distinguishing between depression in bipolar disorder and unipolar depression using magnetic resonance imaging: A systematic review[J]. Bipolar Disord, 2022, 24(5): 474-498. DOI: 10.1111/bdi.13176.
[36]
ZHUKOVSKY P, WAINBERG M, MILIC M, et al. Multiscale neural signatures of major depressive, anxiety, and stress-related disorders[J/OL]. Proc Natl Acad Sci U S A, 2022, 119(23): e2204433119 [2025-04-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9191681. DOI: 10.1073/pnas.2204433119.
[37]
CHAI Y, SHELINE Y I, OATHES D J, et al. Functional connectomics in depression: Insights into therapies[J]. Trends Cogn Sci, 2023, 27(9): 814-832. DOI: 10.1016/j.tics.2023.05.006.
[38]
PISONI A, DAVIS S W, SMOSKI M. Neural signatures of saliency-mapping in anhedonia: A narrative review[J/OL]. Psychiatry Res, 2021, 304: 114123 [2025-04-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759627. DOI: 10.1016/j.psychres.2021.114123.
[39]
FOX A S, SHACKMAN A J. An honest reckoning with the amygdala and mental illness[J]. Am J Psychiatry, 2024, 181(12): 1059-1075. DOI: 10.1176/appi.ajp.20240941.
[40]
KIRSTEIN C F, GÜNTÜRKÜN O, OCKLENBURG S. Ultra-high field imaging of the amygdala - a narrative review[J/OL]. Neurosci Biobehav Rev, 2023, 152: 105245 [2025-04-07]. https://linkinghub.elsevier.com/retrieve/pii/S0149763423002142. DOI: 10.1016/j.neubiorev.2023.105245.
[41]
ZHAO X, WU S, LI X, et al. Common neural deficits across reward functions in major depression: A meta-analysis of fMRI studies[J]. Psychol Med, 2024, 54(11): 2794-2806. DOI: 10.1017/S0033291724001235.
[42]
RUPPRECHTER S, ROMANIUK L, SERIES P, et al. Blunted medial prefrontal cortico-limbic reward-related effective connectivity and depression[J]. Brain, 2020, 143(6): 1946-1956. DOI: 10.1093/brain/awaa106.
[43]
LI M. Lateral habenula neurocircuits mediate the maternal disruptive effect of maternal stress: A hypothesis[J]. Zool Res, 2022, 43(2): 166-175. DOI: 10.24272/j.issn.2095-8137.2021.362.
[44]
CUI Y, HUANG X, HUANG P, et al. Reward ameliorates depressive-like behaviors via inhibition of the substantia innominata to the lateral habenula projection[J/OL]. Sci Adv, 2022, 8(27): eabn0193 [2025-04-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269896. DOI: 10.1126/sciadv.abn0193.
[45]
ARJMAND S, LANDAU A M, VARASTEHMORADI B, et al. The intersection of astrocytes and the endocannabinoid system in the lateral habenula: On the fast-track to novel rapid-acting antidepressants[J]. Mol Psychiatry, 2022, 27(8): 3138-3149. DOI: 10.1038/s41380-022-01598-4.
[46]
DAI P, SHI Y, ZHOU X, et al. Identification of multimodal brain imaging biomarkers in first-episode drugs-naive major depressive disorder through a multi-site large-scale MRI consortium data[J]. J Affect Disord, 2025, 369: 364-372. DOI: 10.1016/j.jad.2024.10.006.
[47]
LIAO Q, ZHANG Z, YANG X, et al. Changes of structural functional connectivity coupling and its correlations with cognitive function in patients with major depressive disorder[J]. J Affect Disord, 2024, 351: 259-267. DOI: 10.1016/j.jad.2024.01.173.
[48]
WANG X, XUE L, HUA L, et al. Structure-function coupling and hierarchy-specific antidepressant response in major depressive disorder[J]. Psychol Med, 2024, 54(10): 2688-2697. DOI: 10.1017/S0033291724000801.
[49]
XU M, LI X, TENG T, et al. Reconfiguration of structural and functional connectivity coupling in patient subgroups with adolescent depression[J/OL]. JAMA Netw Open, 2024, 7(3): e241933 [2025-04-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10933730. DOI: 10.1001/jamanetworkopen.2024.1933.
[50]
SYDNOR V J, CIESLAK M, DUPRAT R, et al. Cortical-subcortical structural connections support transcranial magnetic stimulation engagement of the amygdala[J/OL]. Sci Adv, 2022, 8(25): eabn5803 [2025-04-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9217085. DOI: 10.1126/sciadv.abn5803.
[51]
LAN M J, CHHETRY B T, LISTON C, et al. Transcranial magnetic stimulation of left dorsolateral prefrontal cortex induces brain morphological changes in regions associated with a treatment resistant major depressive episode: an exploratory analysis[J]. Brain Stimul, 2016, 9(4): 577-583. DOI: 10.1016/j.brs.2016.02.011.
[52]
WANG Z, ZHANG D, GUAN M, et al. Increased thalamic gray matter volume induced by repetitive transcranial magnetic stimulation treatment in patients with major depressive disorder[J/OL]. Front Psychiatry, 2023, 14: 1163067 [2025-04-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10218132. DOI: 10.3389/fpsyt.2023.1163067.
[53]
BAEKEN C, VAN BEEK V, VANDERHASSELT M A, et al. Cortical thickness in the right anterior cingulate cortex relates to clinical response to left prefrontal accelerated intermittent theta burst stimulation: An exploratory study[J]. Neuromodulation, 2021, 24(5): 938-949. DOI: 10.1111/ner.13380.
[54]
NESTOR S M, MIR-MOGHTADAEI A, VILA-RODRIGUEZ F, et al. Large-scale structural network change correlates with clinical response to rTMS in depression[J]. Neuropsychopharmacology, 2022, 47(5): 1096-1105. DOI: 10.1038/s41386-021-01256-3.
[55]
PAOLINI M, HARRINGTON Y, COLOMBO F, et al. Hippocampal and parahippocampal volume and function predict antidepressant response in patients with major depression: A multimodal neuroimaging study[J]. J Psychopharmacol, 2023, 37(11): 1070-1081. DOI: 10.1177/02698811231190859.
[56]
TORRES I J, GE R, MCGIRR A, et al. Effects of intermittent theta-burst transcranial magnetic stimulation on cognition and hippocampal volumes in bipolar depression[J]. Dialogues Clin Neurosci, 2023, 25(1): 24-32. DOI: 10.1080/19585969.2023.2186189.
[57]
NODA Y, ZOMORRODI R, DASKALAKIS Z J, et al. Enhanced theta-gamma coupling associated with hippocampal volume increase following high-frequency left prefrontal repetitive transcranial magnetic stimulation in patients with major depression[J]. Int J Psychophysiol, 2018, 133: 169-174. DOI: 10.1016/j.ijpsycho.2018.07.004.
[58]
DALHUISEN I, ACKERMANS E, MARTENS L, et al. Longitudinal effects of rTMS on neuroplasticity in chronic treatment-resistant depression[J]. Eur Arch Psychiatry Clin Neurosci, 2020, 271(1): 39-47. DOI: 10.1007/s00406-020-01135-w.
[59]
LI Y, LI L, PAN W. Repetitive transcranial magnetic stimulation (rTMS) modulates hippocampal structural synaptic plasticity in rats[J]. Physiol Res, 2019, 68(1): 99-105. DOI: 10.33549/physiolres.933772.
[60]
YUAN Q, LEI Y, YU K, et al. Repetitive transcranial magnetic stimulation and fluoxetine attenuate astroglial activation and benefit behaviours in a chronic unpredictable mild stress mouse model of depression[J]. World J Biol Psychiatry, 2024, 25(2): 82-94. DOI: 10.1080/15622975.2023.2279958.
[61]
CHEN Y H, ZHANG R G, XUE F, et al. Quetiapine and repetitive transcranial magnetic stimulation ameliorate depression-like behaviors and up-regulate the proliferation of hippocampal-derived neural stem cells in a rat model of depression: The involvement of the BDNF/ERK signal pathway[J/OL]. Pharmacol Biochem Behav, 2015, 136: 39-46 [2025-04-01]. https://linkinghub.elsevier.com/retrieve/pii/S0091305715300290. DOI: 10.1016/j.pbb.2015.07.005.
[62]
DRYSDALE A T, GROSENICK L, DOWNAR J, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression[J]. Nat Med, 2017, 23(1): 28-38. DOI: 10.1038/nm.4246.
[63]
VOETTERL H, ALYAGON U, MIDDLETON V J, et al. Does 18 Hz deep TMS benefit a different subgroup of depressed patients relative to 10 Hz rTMS? The role of the individual alpha frequency[J]. Eur Neuropsychopharmacol, 2024, 89: 73-81. DOI: 10.1016/j.euroneuro.2024.09.007.
[64]
MOMI D, OZDEMIR R A, TADAYON E, et al. Perturbation of resting-state network nodes preferentially propagates to structurally rather than functionally connected regions[J/OL]. Sci Rep, 2021, 11: 12458 [2025-04-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8203778. DOI: 10.1038/s41598-021-90663-z.
[65]
NING L, RATHI Y, BARBOUR T, et al. White matter markers and predictors for subject-specific rTMS response in major depressive disorder[J]. J Affect Disord, 2021, 299: 207-214. DOI: 10.1016/j.jad.2021.12.005.
[66]
GE R, HUMAIRA A, GREGORY E, et al. Predictive value of acute neuroplastic response to rTMS in treatment outcome in depression: A concurrent TMS-fMRI trial[J]. Am J Psychiatry, 2022, 179(7): 500-508. DOI: 10.1176/appi.ajp.21050541.
[67]
OATHES D J, ZIMMERMAN J P, DUPRAT R, et al. Resting fMRI-guided TMS results in subcortical and brain network modulation indexed by interleaved TMS/fMRI[J]. Exp Brain Res, 2021, 239(4): 1165-1178. DOI: 10.1007/s00221-021-06036-5.
[68]
BRILEY P M, WEBSTER L, BOUTRY C, et al. Magnetic resonance imaging connectivity features associated with response to transcranial magnetic stimulation in major depressive disorder[J/OL]. Psychiatry Res Neuroimaging, 2024, 342: 111846 [2025-04-07]. https://linkinghub.elsevier.com/retrieve/pii/S0925492724000696. DOI: 10.1016/j.pscychresns.2024.111846.
[69]
GE R, DOWNAR J, BLUMBERGER D M, et al. Functional connectivity of the anterior cingulate cortex predicts treatment outcome for rTMS in treatment-resistant depression at 3-month follow-up[J]. Brain Stimul, 2020, 13(1): 206-214. DOI: 10.1016/j.brs.2019.10.012.
[70]
MORRISS R, BRILEY P M, WEBSTER L, et al. Connectivity-guided intermittent theta burst versus repetitive transcranial magnetic stimulation for treatment-resistant depression: A randomized controlled trial[J]. Nat Med, 2024, 30(2): 403-413. DOI: 10.1038/s41591-023-02764-z.
[71]
CUI H, DING H, HU L, et al. A novel dual-site OFC-dlPFC accelerated repetitive transcranial magnetic stimulation for depression: A pilot randomized controlled study[J]. Psychol Med, 2024, 54(14): 1-14. DOI: 10.1017/S0033291724002289.
[72]
ZHANG Y, MU N, QI S, et al. Improved brain functional network in major depressive disorder with suicidal ideation after individual target-transcranial magnetic stimulation treatment: A graph-theory analysis[J/OL]. Front Psychiatry, 2025, 16: 1486835 [2025-04-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794214. DOI: 10.3389/fpsyt.2025.1486835.
[73]
HAN X, ZHU Z, LUAN J, et al. Effects of repetitive transcranial magnetic stimulation and their underlying neural mechanisms evaluated with magnetic resonance imaging-based brain connectivity network analyses[J/OL]. Eur J Radiol Open, 2023, 10: 100495 [2025-04-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311181. DOI: 10.1016/j.ejro.2023.100495.
[74]
TANG N, SUN C, WANG Y, et al. Clinical response of major depressive disorder patients with suicidal ideation to individual target-transcranial magnetic stimulation[J/OL]. Front Psychiatry, 2021, 12: 768819 [2025-04-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8602581. DOI: 10.3389/fpsyt.2021.768819.
[75]
BARREDO J, BERLOW Y, SWEARINGEN H R, et al. Multimodal elements of suicidality reduction after transcranial magnetic stimulation[J]. Neuromodulation, 2021, 24(5): 930-937. DOI: 10.1111/ner.13376.
[76]
WU G R, BAEKEN C. Exploring potential working mechanisms of accelerated HF-rTMS in refractory major depression with a focus on locus coeruleus connectivity[J/OL]. Eur Psychiatry, 2024, 67(1): e70 [2025-04-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730058. DOI: 10.1192/j.eurpsy.2024.1769.
[77]
BARREDO J, BELLONE J A, EDWARDS M, et al. White Matter Integrity and Functional Predictors of Response to Repetitive Transcranial Magnetic Stimulation for Posttraumatic Stress Disorder and Major Depression[J]. Depress Anxiety, 2019, 36(11): 1047-1057. DOI: 10.1002/da.22952.
[78]
TURA A, PROMET L, GOYA-MALDONADO R. Structural-functional connectomics in major depressive disorder following aiTBS treatment[J/OL]. Psychiatry Res, 2024, 342: 116217 [2025-04-07]. https://linkinghub.elsevier.com/retrieve/pii/S016517812400502X. DOI: 10.1016/j.psychres.2024.116217.
[79]
CHEN D, LEI X, DU L, et al. Use of machine learning in predicting the efficacy of repetitive transcranial magnetic stimulation on treating depression based on functional and structural thalamo-prefrontal connectivity: A pilot study[J]. J Psychiatr Res, 2022, 148: 88-94. DOI: 10.1016/j.jpsychires.2022.01.064.
[80]
PAN F, LI J, JIN S, et al. Investigating the predictive models of efficacy of accelerated neuronavigation-guided rTMS for suicidal depression based on multimodal large-scale brain networks[J/OL]. Int J Clin Health Psychol, 2025, 25(1): 100564 [2025-06-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11999189. DOI: 10.1016/j.ijchp.2025.100564.
[81]
TAYLOR H, NICHOLAS P, HOY K, et al. Functional connectivity analysis of the depression connectome provides potential markers and targets for transcranial magnetic stimulation[J]. J Affect Disord, 2023, 329: 539-547. DOI: 10.1016/j.jad.2023.02.082.

PREV Research progress of dynamic functional connectivity in adolescent depression
NEXT MRI-based research advances in the glymphatic system in Alzheimer<sup><sup>,</sup></sup>s disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn