Share:
Share this content in WeChat
X
Review
MRI-based research advances in the glymphatic system in Alzheimer's disease
HU Yuxin  SU Yunyan  YAO Hui  YANG Yiwen  YAN Suoyu 

Cite this article as: HU Y X, SU Y Y, YAO Hui, et al. MRI-based research advances in the glymphatic system in Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2025, 16(7): 109-116. DOI:10.12015/issn.1674-8034.2025.07.018.


[Abstract] With the acceleration of global aging, research on the pathogenesis of Alzheimer's disease (AD) has become a central issue in neuroscience. The glymphatic system (GS), a perivascular network responsible for the clearance of metabolic waste in the central nervous system, plays a key role in the accumulation of amyloid-beta (Aβ) and Tau pathology associated with AD. Early visualization of structural and functional changes in GS is important to diagnose some of the neurodegenerative diseases and develop new therapeutic options. In recent years, multimodal magnetic resonance imaging (MRI) techniques—including dynamic contrast-enhanced MRI (DCE-MRI), diffusion tensor imaging analysis along the perivascular space (DTI-ALPS), chemical-exchange-saturation-transfer MRI (CEST-MRI), and resting state functional MRI (rs-fMRI)—have gradually visualized the structure and function of GS in a noninvasive or minimally invasive way. In this paper, we review the preclinical and clinical research evidence and dynamically monitor the GS functional changes and influx-efflux pathways using multimodal MRI technology. By elucidating visualized evidence of GS dysfunction and identifying associated neuroimaging biomarkers, this work aims to provide novel insights into early AD diagnosis and the underlying pathological mechanisms.
[Keywords] Alzheimer's disease;glymphatic system;magnetic resonance imaging;diffusion tensor imaging analysis along the perivascular space

HU Yuxin1   SU Yunyan1*   YAO Hui2   YANG Yiwen1   YAN Suoyu1  

1 Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China

2 Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China

Corresponding author: SU Y Y, E-mail: suyunyanhappy@163.com

Conflicts of interest   None.

Received  2025-04-21
Accepted  2025-07-07
DOI: 10.12015/issn.1674-8034.2025.07.018
Cite this article as: HU Y X, SU Y Y, YAO Hui, et al. MRI-based research advances in the glymphatic system in Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2025, 16(7): 109-116. DOI:10.12015/issn.1674-8034.2025.07.018.

[1]
SACCHI L, D'AGATA F, CAMPISI C, et al. A "glympse" into neurodegeneration: Diffusion MRI and cerebrospinal fluid aquaporin-4 for the assessment of glymphatic system in Alzheimer's disease and other dementias[J/OL]. Hum Brain Mapp, 2024, 45(12): e26805 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/39185685/. DOI: 10.1002/hbm.26805.
[2]
ZHANG Y, CHEN H Q, LI R, et al. Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future[J/OL]. Signal Transduct Target Ther, 2023, 8(1): 248 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/37386015/. DOI: 10.1038/s41392-023-01484-7.
[3]
ZHANG Q, YAN Y. The role of natural flavonoids on neuroinflammation as a therapeutic target for Alzheimer's disease: a narrative review[J]. Neural Regen Res, 2023, 18(12): 2582-2591. DOI: 10.4103/1673-5374.373680.
[4]
SHEN W Z, LI Y G. Advances in the clinical application of MRI in the glymphatic system of the brain[J]. Chin J Magn Reson Imaging, 2024, 15(3): 212-217. DOI: 10.12015/issn.1674-8034.2024.03.035.
[5]
THIPANI MADHU M, BALAJI O, KANDI V, et al. Role of the glymphatic system in Alzheimer's disease and treatment approaches: a narrative review[J/OL]. Cureus, 2024, 16(6): e63448 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/39077280/. DOI: 10.7759/cureus.63448.
[6]
ILIFF J J, WANG M, LIAO Y, et al. A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β[J/OL]. Sci Transl Med, 2012, 4(147): 147ra111 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/22896675/. DOI: 10.1126/scitranslmed.3003748.
[7]
LEE D H, LEE E C, PARK S W, et al. Pathogenesis of cerebral small vessel disease: role of the glymphatic system dysfunction[J/OL]. Int J Mol Sci, 2024, 25(16): 8752 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/39201439/. DOI: 10.3390/ijms25168752.
[8]
LI X Y, WANG S M, ZHANG D J, et al. The periaxonal space as a conduit for cerebrospinal fluid flow to peripheral organs[J/OL]. Proc Natl Acad Sci U S A, 2024, 121(45): e2400024121 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/39485799/. DOI: 10.1073/pnas.2400024121.
[9]
CHACHAJ A, GĄSIOROWSKI K, SZUBA A, et al. The Lymphatic System In The Brain Clearance Mechanisms-New Therapeutic Perspectives For Alzheimer's Disease[J]. Curr Neuropharmacol, 2023, 21(2): 380-391. DOI: 10.2174/1570159X20666220411091332.
[10]
LIU H C, CHEN H H, HO C S, et al. Investigation of the Number of Tests Required for Assaying Plasma Biomarkers Associated with Alzheimer's Disease Using Immunomagnetic Reduction[J]. Neurol Ther, 2021, 10(2): 1015-1028. DOI: 10.1007/s40120-021-00280-1.
[11]
CHATTERJEE P, PEDRINI S, STOOPS E, et al. Plasma glial fibrillary acidic protein is elevated in cognitively normal older adults at risk of Alzheimer's disease[J/OL]. Transl Psychiatry, 2021, 11(1): 27 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/33431793/. DOI: 10.1038/s41398-020-01137-1.
[12]
ULLAH K, ALMUTAIRI M H, ABBAS M N, et al. Discovery of Selective β-Secretase (BACE-1) Inhibitors by the Solid-Phase Synthesis of Small Molecular-sized Peptides[J]. Curr Alzheimer Res, 2024, 21(10): 723-734. DOI: 10.2174/0115672050336253241227102506
[13]
TOSAT-BITRIÁN C, BUESO DE BARRIO J A, STEWART M H, et al. Membrane-targeted quantum dot-based BACE1 activity sensors for In vitro and In cellulo assays[J]. ACS Appl Mater Interfaces, 2024, 16(46): 63186-63194. DOI: 10.1021/acsami.4c12560.
[14]
GALEANA-ASCENCIO R A, MENDIETA L, LIMON D I, et al. β-secretase-1: In silico drug reposition for Alzheimer's disease[J/OL]. Int J Mol Sci, 2023, 24(9): 8164 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/37175873/. DOI: 10.3390/ijms24098164.
[15]
ROTH A, SANDER A, OSWALD M S, et al. Comprehensive characterization of CK1δ-mediated tau phosphorylation in Alzheimer's disease[J/OL]. Front Mol Biosci, 2022, 9: 872171 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/36203870/. DOI: 10.3389/fmolb.2022.872171.
[16]
FROUDIST-WALSH S, XU T, NIU M, et al. Gradients of neurotransmitter receptor expression in the macaque cortex[J]. Nat Neurosci, 2023, 26(7): 1281-1294. DOI: 10.1038/s41593-023-01351-2.
[17]
SEPLOVICH G, BOUCHI Y, DE RIVERO VACCARI J P, et al. Inflammasome links traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease[J]. Neural Regen Res, 2025, 20(6): 1644-1664. DOI: 10.4103/NRR.NRR-D-24-00107.
[18]
HASEGAWA I, HIRAYOSHI Y, MINATANI S, et al. In vivo dynamic movement of polymerized amyloid β in the perivascular space of the cerebral cortex in mice[J]. Int J Mol Sci, 2022, 23(12): 6422 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/35742862/. DOI: 10.3390/ijms23126422.
[19]
KATO D, KAMEDA H, KINOTA N, et al. Loss of aquaporin-4 impairs cerebrospinal fluid solute clearance through cerebrospinal fluid drainage pathways[J/OL]. Sci Rep, 2024, 14(1): 27982 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/39543281/. DOI: 10.1038/s41598-024-79147-y.
[20]
ABBRESCIA P, SIGNORILE G, VALENTE O, et al. Crucial role of Aquaporin-4 extended isoform in brain water Homeostasis and Amyloid-β clearance: implications for Edema and neurodegenerative diseases[J/OL]. Acta Neuropathol Commun, 2024, 12(1): 159 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/39385254/. DOI: 10.1186/s40478-024-01870-4.
[21]
HARRISON I F, ISMAIL O, MACHHADA A, et al. Impaired glymphatic function and clearance of tau in an Alzheimer's disease model[J]. Brain, 2020, 143(8): 2576-2593. DOI: 10.1093/brain/awaa179.
[22]
GAIKWAD S, SENAPATI S, HAQUE M A, et al. Senescence, brain inflammation, and oligomeric tau drive cognitive decline in Alzheimer's disease: evidence from clinical and preclinical studies[J]. Alzheimers Dement, 2024, 20(1): 709-727. DOI: 10.1002/alz.13490.
[23]
SIMON M, WANG M X, ISMAIL O, et al. Loss of perivascular aquaporin-4 localization impairs glymphatic exchange and promotes amyloid β plaque formation in mice[J/OL]. Alzheimers Res Ther, 2022, 14(1): 59 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/35473943/. DOI: 10.1186/s13195-022-00999-5.
[24]
SARKER A, SUH M, CHOI Y, et al. Intrathecal [64Cu]Cu-albumin PET reveals age-related decline of lymphatic drainage of cerebrospinal fluid[J/OL]. Sci Rep, 2023, 13(1): 12930 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/37558700/. DOI: 10.1038/s41598-023-39903-y.
[25]
ZHOU L, YANG W, LIU Y, et al. Moderating effect of education on glymphatic function and cognitive performance in mild cognitive impairment[J/OL]. Front Aging Neurosci, 2024, 16: 1399943 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/38756534/. DOI: 10.3389/fnagi.2024.1399943.
[26]
YE C, WANG S, NIU L, et al. Unlocking potential of oxytocin: improving intracranial lymphatic drainage for Alzheimer's disease treatment[J]. Theranostics, 2024, 14(11): 4331-4351. DOI: 10.7150/thno.98587.
[27]
GIÃO T, TEIXEIRA T, ALMEIDA M R, et al. Choroid plexus in Alzheimer's disease-the current state of knowledge[J/OL]. Biomedicines, 2022, 10(2): 224 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/35203434/. DOI: 10.3390/biomedicines10020224.
[28]
JIANG J, ZHUO Z, WANG A, et al. Choroid plexus volume as a novel candidate neuroimaging marker of the Alzheimer's continuum[J/OL]. Alzheimers Res Ther, 2024, 16(1): 149 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/38961406/. DOI: 10.1186/s13195-024-01520-w.
[29]
CHOI J D, MOON Y, KIM H J, et al. Choroid plexus volume and permeability at brain MRI within the Alzheimer disease clinical spectrum[J]. Radiology, 2022, 304(3): 635-645. DOI: 10.1148/radiol.212400.
[30]
OTA M, SATO N, NAKAYA M, et al. Relationship between the tau protein and choroid plexus volume in Alzheimer's disease[J]. Neuroreport, 2023, 34(11): 546-550. DOI: 10.1097/WNR.0000000000001923.
[31]
UMEMURA Y, WATANABE K, KASAI S, et al. Choroid plexus enlargement in mild cognitive impairment on MRI: a large cohort study[J]. Eur Radiol, 2024, 34(8): 5297-5304. DOI: 10.1007/s00330-023-10572-9.
[32]
MUNICIO C, CARRERO L, ANTEQUERA D, et al. Choroid Plexus Aquaporins in CSF Homeostasis and the Glymphatic System: Their Relevance for Alzheimer's Disease[J/OL]. Int J Mol Sci, 2023, 24(1): 878 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/36614315/. DOI: 10.3390/ijms24010878.
[33]
ČARNA M, ONYANGO I G, KATINA S, et al. Pathogenesis of Alzheimer's disease: Involvement of the choroid plexus[J]. Alzheimers Dement, 2023, 19(8): 3537-3554. DOI: 10.1002/alz.12970.
[34]
KAMAGATA K, SAITO Y, ANDICA C, et al. Noninvasive Magnetic Resonance Imaging Measures of Glymphatic System Activity[J]. J Magn Reson Imaging, 2024, 59(5): 1476-1493. DOI: 10.1002/jmri.28977.
[35]
LEE M K, CHO S J, BAE Y J, et al. MRI-Based Demonstration of the Normal Glymphatic System in a Human Population: A Systematic Review[J/OL]. Front Neurol, 2022, 13: 827398 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/35693018/. DOI: 10.3389/fneur.2022.827398.
[36]
XU Z, JI Y, WEN C, et al. Tracer kinetic model detecting heterogeneous blood-brain barrier permeability to water and contrast agent in Alzheimer's disease and dementia with lewy bodies[J/OL]. Alzheimers Dement, 2025, 21(2): e14529 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/39936244/. DOI: 10.1002/alz.14529.
[37]
BARISANO G, LYNCH K M, SIBILIA F, et al. Imaging perivascular space structure and function using brain MRI[J/OL]. Neuroimage, 2022, 257: 119329 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/35609770/. DOI: 10.1016/j.neuroimage.2022.119329.
[38]
SIMEGN G L, SUN P Z, ZHOU J, et al. Motion and magnetic field inhomogeneity correction techniques for chemical exchange saturation transfer (CEST) MRI: a contemporary review[J/OL]. NMR Biomed, 2025, 38(1): e5294 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/39532518/. DOI: 10.1002/nbm.5294.
[39]
MOHAMMADIAN F, ZARE SADEGHI A, NOROOZIAN M, et al. Quantitative assessment of resting-state functional connectivity MRI to differentiate amnestic mild cognitive impairment, late-onset Alzheimer's disease from normal subjects[J]. J Magn Reson Imaging, 2023, 57(6): 1702-1712. DOI: 10.1002/jmri.28469.
[40]
TAOKA T, NAGANAWA S. Glymphatic imaging using MRI[J]. J Magn Reson Imagin, 2020, 51(1): 11-24. DOI: 10.1002/jmri.26892.
[41]
BAI R, JIA Y, WANG B, et al. In vivo spatiotemporal mapping of proliferation activity in gliomas via water-exchange dynamic contrast-enhanced MRI[J]. Theranostics, 2025, 15(10): 4693-4707. DOI: 10.7150/thno.108479.
[42]
HOFFMANN A, ALMIRI W, MORDASINI P, et al. 7T MRI as a powerful tool to detect small and medium size vessel CNS vasculitis[J]. AJNR Am J Neuroradiol, 2025, 46(6): 1283-1286. DOI: 10.3174/ajnr.A8627.
[43]
PENG W, ACHARIYAR T M, LI B, et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer's disease[J]. Neurobiol Dis, 2016, 93: 215-225. DOI: 10.1016/j.nbd.2016.05.015.
[44]
ZHOU Y, CAI J, ZHANG W, et al. Impairment of the Glymphatic Pathway and Putative Meningeal Lymphatic Vessels in the Aging Human[J]. Ann Neurol, 2020, 87(3): 357-369. DOI: 10.1002/ana.25670.
[45]
BERGER F, KUBIK-HUCH R A, NIEMANN T, et al. Gadolinium distribution in cerebrospinal fluid after administration of a gadolinium-based MR contrast agent in humans[J]. Radiology, 2018, 288(3): 703-709. DOI: 10.1148/radiol.2018171829.
[46]
YU L, HU X, LI H, et al. Perivascular spaces, glymphatic system and MR[J/OL]. Front Neurol, 2022, 13: 844938 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/35592469/. DOI: 10.3389/fneur.2022.844938.
[47]
DEIKE-HOFMANN K, REUTER J, HAASE R, et al. Glymphatic pathway of gadolinium-based contrast agents through the brain: overlooked and misinterpreted[J]. Invest Radiol, 2019, 54(4): 229-237. DOI: 10.1097/RLI.0000000000000533.
[48]
CHEN W, SONG X, ZHANG Y, et al. Assessment of the Virchow-Robin Spaces in Alzheimer disease, mild cognitive impairment, and normal aging, using high-field MR imaging[J]. AJNR Am J Neuroradiol, 2011, 32(8): 1490-1495. DOI: 10.3174/ajnr.A2541.
[49]
ZHANG X, WANG Y, JIAO B, et al. Glymphatic system impairment in Alzheimer's disease: associations with perivascular space volume and cognitive function[J]. Eur Radiol, 2024, 34(2): 1314-1323. DOI: 10.1007/s00330-023-10122-3.
[50]
GOUVEIA-FREITAS K, BASTOS-LEITE A J. Perivascular spaces and brain waste clearance systems: relevance for neurodegenerative and cerebrovascular pathology[J]. Neuroradiology, 2021, 63(10): 1581-1597. DOI: 10.1007/s00234-021-02718-7.
[51]
WANG Q, HUANG X, SU Y, et al. Activation of wnt/β-catenin pathway mitigates blood-brain barrier dysfunction in Alzheimer's disease[J]. Brain, 2022, 145(12): 4474-4488. DOI: 10.1093/brain/awac236.
[52]
LIANG T, CHANG F, HUANG Z, et al. Evaluation of glymphatic system activity by diffusion tensor image analysis along the perivascular space (DTI- ALPS) in dementia patients[J/OL]. Br J Radiol, 2023, 96(1146): 20220315 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/37066824/. DOI: 10.1259/bjr.20220315.
[53]
TAOKA T, MASUTANI Y, KAWAI H, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases[J]. Jpn J Radiol, 2017, 35(4): 172-178. DOI: 10.1007/s11604-017-0617-z.
[54]
ZHANG W, ZHOU Y, WANG J, et al. Glymphatic clearance function in patients with cerebral small vessel disease[J/OL]. Neuroimage, 2021, 238: 118257 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/34118396/. DOI: 10.1016/j.neuroimage.2021.118257.
[55]
HUANG S, ZHANG Y, GUO Y, et al. Glymphatic system dysfunction predicts amyloid deposition, neurodegeneration, and clinical progression in Alzheimer's disease[J]. Alzheimers Dement, 2024, 20(5): 3251-3269. DOI: 10.1002/alz.13789.
[56]
KAMAGATA K, ANDICA C, TAKABAYASHI K, et al. Association of MRI indices of glymphatic system with amyloid deposition and cognition in mild cognitive impairment and Alzheimer disease[J/OL]. Neurology, 2022, 99(24): E2648-E2660 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/36123122/. DOI: 10.1212/WNL.0000000000201300.
[57]
DU X L, DUAN X R, LI G C, et al. Current status and challenges of MRI technology in the study of the glymphatic system in the human brain[J]. Chin J Magn Reson Imaging, 2024, 15(11): 180-184. DOI: 10.12015/issn.1674-8034.2024.11.028.
[58]
STEWARD C E, VENKATRAMAN V K, LUI E, et al. Assessment of the DTI-ALPS Parameter Along the Perivascular Space in Older Adults at Risk of Dementia[J]. J Neuroimaging, 2021, 31(3): 569-578. DOI: 10.1111/jon.12837.
[59]
HSU J L, WEI Y C, TOH C H, et al. Magnetic Resonance Images Implicate That Glymphatic Alterations Mediate Cognitive Dysfunction in Alzheimer Disease[J]. Ann Neurol, 2023, 93(1): 164-174. DOI: 10.1002/ana.26516.
[60]
LIU L, ZENG Q, LUO X, et al. Association between single nucleotide polymorphisms in the aquaporin-4 gene and longitudinal changes in white matter free water and cognitive function in non-demented older adults[J/OL]. Hum Brain Mapp, 2025, 46(4): e70171 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/40016624/. DOI: 10.1002/hbm.70171.
[61]
SHAO Z, GAO X, CEN S, et al. Unveiling the link between glymphatic function and cortical microstructures in post-traumatic stress disorder[J]. J Affect Disord, 2024, 365: 341-350. DOI: 10.1016/j.jad.2024.08.094.
[62]
DENG Z, WANG W, NIE Z, et al. Increased glymphatic system activity and thalamic vulnerability in drug-naive somatic depression: evidenced by DTI-ALPS index[J/OL]. Neuroimage Clin, 2025, 46: 103769 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/40120532/ DOI: 10.1016/j.nicl.2025.103769.
[63]
SU H, CHAN K W Y. Design Chemical Exchange Saturation Transfer Contrast Agents and Nanocarriers for Imaging Proton Exchange in Vivo[J]. ACS nano, 2024, 18(50): 33775-33791. DOI: 10.1021/acsnano.4c05923.
[64]
BIE C, VAN ZIJL P, XU J, et al. Radiofrequency labeling strategies in chemical exchange saturation transfer MRI[J/OL]. NMR Biomed, 2023, 36(6): e4944 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/37002814/. DOI: 10.1002/nbm.4944.
[65]
SUN P Z, XIAO G, ZHOU I Y, et al. A method for accurate pH mapping with chemical exchange saturation transfer (CEST) MRI[J]. Contrast Media Mol Imaging, 2016, 11(3): 195-202. DOI: 10.1002/cmmi.1680.
[66]
HUANG J, VAN ZIJL P C M, HAN X, et al. Altered D-glucose in brain parenchyma and cerebrospinal fluid of early Alzheimer's disease detected by dynamic glucose-enhanced MRI[J/OL]. Sci Adv, 2020, 6(20): eaba3884 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/32426510/. DOI: 10.1126/sciadv.aba3884.
[67]
XU X, CHAN K W Y, KNUTSSON L, et al. Dynamic glucose enhanced (DGE) MRI for combined imaging of blood-brain barrier break down and increased blood volume in brain cancer[J]. Magn Reson Med, 2015, 74(6): 1556-1563. DOI: 10.1002/mrm.25995.
[68]
CHEN Y, DAI Z, FAN R, et al. Glymphatic system visualized by chemical-exchange-saturation-transfer magnetic resonance imaging[J]. ACS Chem Neurosci, 2020, 11(13): 1978-1984. DOI: 10.1021/acschemneuro.0c00222.
[69]
OHNO K, OHKUBO M, ZHENG B, et al. GlyCEST: magnetic resonance imaging of glycine-distribution in the normal murine brain and alterations in 5xFAD mice[J/OL]. Contrast Media Mol Imaging, 2021: 8988762 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/35046756/ DOI: 10.1155/2021/8988762.
[70]
LIU Y, LI J, JI H, et al. Comparisons of glutamate in the brains of Alzheimer's disease mice under chemical exchange saturation transfer imaging based on machine learning analysis[J/OL]. Front Neurosci, 2022, 16: 838157 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/35592256/ DOI: 10.3389/fnins.2022.838157.
[71]
XU L, LAI L, WEN Y, et al. Angiopep-2, an MRI Biomarker, Dynamically Monitors Amyloid Deposition in Early Alzheimer?s Disease[J]. ACS Chem Neurosci, 2023, 14(2): 226-234. DOI: 10.1021/acschemneuro.2c00513.
[72]
LI Y, LIN S, GUO Z, et al. Decoupling of global signal and cerebrospinal fluid inflow is associated with cognitive decline in patients with obstructive sleep apnoea[J]. Sleep Med, 2025, 129: 330-338. DOI: 10.1016/j.sleep.2025.03.009.
[73]
WANG Z, SONG Z, ZHOU C, et al. Reduced coupling of global brain function and cerebrospinal fluid dynamics in parkinson's disease[J]. J Cereb Blood Flow Metab, 2023, 43(8): 1328-1339. DOI: 10.1177/0271678X231164337.
[74]
JIANG D, LIU L, KONG Y, et al. Regional Glymphatic Abnormality in Behavioral Variant Frontotemporal Dementia[J]. Ann Neurol, 2023, 94(3): 442-456. DOI: 10.1002/ana.26710.
[75]
KIVINIEMI V, WANG X, KORHONEN V, et al. A Ultra-fast magnetic resonance encephalography of physiological brain activity - Glymphatic pulsation mechanisms?[J]. J Cereb Blood Flow Metab, 2016, 36(6): 1033-1045. DOI: 10.1177/0271678X15622047.
[76]
HAN F, CHEN J, BELKIN-ROSEN A, et al. Reduced coupling between cerebrospinal fluid flow and global brain activity is linked to Alzheimer disease-related pathology[J/OL]. PLoS Biol, 2021, 19(6): e3001233 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/34061820/ DOI: 10.1371/journal.pbio.3001233.
[77]
TWOHY K E, KRAMER M K, DIANO A M, et al. Mechanical properties of the cortex in older adults and relationships with personality traits[J/OL]. Hum Brain Mapp, 2025, 46(2): e70147 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/39916406/. DOI: 10.1002/hbm.70147.
[78]
PAVULURI K, HUSTON J, EHMAN R L, et al. Associations between vascular health, brain stiffness and global cognitive function[J/OL]. Brain Commun, 2024, 6(2): fcae073 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/38505229/. DOI: 10.1093/braincomms/fcae073.
[79]
HALL C M, LASLI S, SERWINSKI B, et al. Hippocampus of the APPNL-G-F mouse model of Alzheimer's disease exhibits region-specific tissue softening concomitant with elevated astrogliosis[J/OL]. Front Aging Neurosci, 2023, 15: 1212212 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/37547743/. DOI: 10.3389/fnagi.2023.1212212.
[80]
JOO B, WON S Y, SINKUS R, et al. Viscoelastic property of the brain assessed with magnetic resonance elastography and its association with glymphatic system in neurologically normal individuals[J]. Korean J Radiol, 2023, 24(6): 564-573. DOI: 10.3348/kjr.2022.0992.
[81]
WEN Q, MUSKAT J, BABBS C F, et al. Dynamic diffusion-weighted imaging of intracranial cardiac impulse propagation along arteries to arterioles in the aging brain[J/OL]. J Cereb Blood Flow Metab, 2025: 271678X251320902 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/39947901/. DOI: 10.1177/0271678X251320902.
[82]
CHASE H W, HAFEMAN D M, GHANE M, et al. Reproducible effects of sex and acquisition order on multiple global signal metrics: implications for functional connectivity studies of phenotypic individual differences using fMRI[J/OL]. Brain Behav, 2025, 15(4): e70141 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/40200728/. DOI: 10.1002/brb3.70141.
[83]
NUTTALL R, EL MIR A, JÄGER C, et al. Broadly applicable methods for the detection of artefacts in electroencephalography acquired simultaneously with hemodynamic recordings[J/OL]. Methodsx, 2023, 11: 102376 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/37767154/. DOI: 10.1016/j.mex.2023.102376.
[84]
SAITO Y, KAMAGATA K, ANDICA C, et al. Multisite harmonization of diffusion tensor image analysis along the perivascular space using the COMBined association test[J]. Jpn J Radiol, 2023, 41(10): 1072-1083. DOI: 10.1007/s11604-023-01432-z.
[85]
NAZERI A, DEHKHARGHANIAN T, LINDSAY K E, et al. The Spatial Patterns and Determinants of Cerebrospinal Fluid Circulation in the Human Brain.[J/OL]. bioRxiv, 2023, 15: 2023.08.13.553149 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/37645835/. DOI: 10.1101/2023.08.13.553149.
[86]
HU Y, WEN C, CAO G, et al. Brain network connectivity feature extraction using deep learning for Alzheimer's disease classification[J/OL]. Neurosci Lett, 2022, 782: 136673 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/35513242/. DOI: 10.1016/j.neulet.2022.136673.
[87]
SONG Z, LI H, ZHANG Y, et al. s2MRI-ADNet: an interpretable deep learning framework integrating euclidean-graph representations of Alzheimer's disease solely from structural MRI[J]. MAGMA, 2024, 37(5): 845-857. DOI: 10.1007/s10334-024-01178-3.
[88]
BEVILACQUA R, BARBAROSSA F, FANTECHI L, et al. Radiomics and Artificial Intelligence for the Diagnosis and Monitoring of Alzheimer's Disease: A Systematic Review of Studies in the Field[J/OL]. J Clin Med, 2023, 12(16): 5432 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/37629474/. DOI: 10.3390/jcm12165432.
[89]
CHEON H, LEE S H, KIM S A, et al. In vivo dynamic and static analysis of lymphatic dysfunction in lymphedema using near-infrared fluorescence indocyanine green lymphangiography[J]. Arterioscler Thromb Vasc Biol, 2023, 43(10): 2008-2022. DOI: 10.1161/ATVBAHA.123.319188.
[90]
SUAMI H, HEYDON-WHITE A, MACKIE H, et al. A new indocyanine green fluorescence lymphography protocol for identification of the lymphatic drainage pathway for patients with breast cancer-related lymphoedema[J/OL]. BMC cancer, 2019, 19(1): 985 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/31640623/. DOI: 10.1186/s12885-019-6192-1.
[91]
VAN HEUMEN S, RIKSEN J J M, BRAMER W M, et al. Imaging of the lymphatic vessels for surgical planning: a systematic review[J]. Ann Surg Onco, 2023, 30(1): 462-479. DOI: 10.1245/s10434-022-12552-7.

PREV The mechanisms of rTMS treatment for major depressive disorder through structural-functional MRI
NEXT Research progress of multimodal MRI technology on the changes in brain function of patients with amblyopia
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn