Share:
Share this content in WeChat
X
Review
Research progress of multimodal MRI technology on the changes in brain function of patients with amblyopia
JIA Jinjin  JIA Jing  SUN Yan  YAN Xingke 

Cite this article as: JIA J J, JIA J, SUN Y, et al. Research progress of multimodal MRI technology on the changes in brain function of patients with amblyopia[J]. Chin J Magn Reson Imaging, 2025, 16(7): 117-123. DOI:10.12015/issn.1674-8034.2025.07.019.


[Abstract] The impairment of visual function in patients with amblyopia is closely related to the changes in brain function. MRI technology enables precise imaging of the brain's structure and function under non-invasive conditions, allowing for an in-depth analysis of the characteristics and mechanisms of the changes in brain function in amblyopia. This article summarizes the literature on the use of MRI technology in recent years to study the brain function mechanisms in patients with amblyopia. Structural MRI shows that the gray matter volume and cortical thickness in brain regions related to the visual pathway of amblyopic patients is reduced. Functional MRI, through task-based fMRI, reveals reduced activation of the visual cortex, and resting-state fMRI shows abnormalities in the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) values of neurons in local brain regions, changes in the functional connectivity of the primary and secondary visual pathways, as well as alterations in brain functional networks such as the default mode network and the salience network. Diffusion MRI reveals a decrease in the fractional anisotropy (FA) value and an increase in the mean diffusivity (MD) value of white matter fiber tracts. Magnetic resonance spectroscopy (MRS) shows a decrease in the γ-aminobutyric acid (GABA) level in the visual cortex. Based on the arterial spin labeling (ASL) cerebral perfusion imaging technique, it has been found that cerebral blood perfusion in certain brain regions of amblyopic patients is reduced. This article reviews the contents mentioned above, aiming to provide more references for the study of the brain mechanisms of amblyopia.
[Keywords] amblyopia;brain function;magnetic resonance imaging;structural magnetic resonance imaging;functional magnetic resonance imaging

JIA Jinjin1   JIA Jing2   SUN Yan3   YAN Xingke2*  

1 Department of Traditional Chinese Medicine, Qinghai Unversity Medical College, Xining 810016, China

2 School of Acupuncture and Massage, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China

3 Lanzhou Bright Eye Hospital, Lanzhou 730000, China

Corresponding author: YAN X K, E-mail: yanxingke@126.com

Conflicts of interest   None.

Received  2025-04-12
Accepted  2025-07-07
DOI: 10.12015/issn.1674-8034.2025.07.019
Cite this article as: JIA J J, JIA J, SUN Y, et al. Research progress of multimodal MRI technology on the changes in brain function of patients with amblyopia[J]. Chin J Magn Reson Imaging, 2025, 16(7): 117-123. DOI:10.12015/issn.1674-8034.2025.07.019.

[1]
WANG G, LIU L. Amblyopia: progress and promise of functional magnetic resonance imaging[J]. Graefes Arch Clin Exp Ophthalmol, 2023, 261(5): 1229-1246. DOI: 10.1007/s00417-022-05826-z.
[2]
BIRCH E E, DUFFY K R. Leveraging neural plasticity for the treatment of amblyopia)[J]. Surv Ophthalmol, 2024, 69(5): 818-832. DOI: 10.1016/j.survophthal.2024.04.006.
[3]
WANG Y, WU Y, LUO L, et al. Structural and functional alterations in the brains of patients with anisometropic and strabismic amblyopia: a systematic review of magnetic resonance imaging studies[J]. Neural Regen Res, 2023, 18(11): 2348-2356. DOI: 10.4103/1673-5374.371349.
[4]
STACY A K, VAN HOOSER S D. Development of Functional Properties in the Early Visual System: New Appreciations of the Roles of Lateral Geniculate Nucleus[J]. Curr Top Behav Neurosci, 2022, 53: 3-35. DOI: 10.1007/7854_2021_297.
[5]
WEN W, WANG Y, ZHOU J, et al. Loss and enhancement of layer-selective signals in geniculostriate and corticotectal pathways of adult human amblyopia[J/OL]. Cell Rep, 2021, 37(11): 110117 [2025-04-18]. https://pubmed.ncbi.nlm.nih.gov/34910903/. DOI: 10.1016/j.celrep.2021.110117.
[6]
DAI P, ZHANG J, WU J, et al. Altered Spontaneous Brain Activity of Children with Unilateral Amblyopia: A Resting State fMRI Study[J/OL]. Neural Plast, 2019, 2019: 3681430 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6683781/. DOI: 10.1155/2019/3681430.
[7]
LUO K. An MRI study on brain structural and functional alterations after treatment in children with anisometropic amblyopia[D]. Gansu Univercity of Chinese Medicine, 2023.
[8]
KRÜGER J, OPFER R, SPIES L, et al. Voxel-based morphometry in single subjects without a scanner-specific normal database using a convolutional neural network[J]. Eur Radiol, 2024, 34(6): 3578-3587. DOI: 10.1007/s00330-023-10356-1.
[9]
BARNES G R, LI X, THOMPSON B, et al. Decreased gray matter concentration in the lateral geniculate nuclei in human amblyopes[J]. Invest Ophthalmol Vis Sci, 2010, 51(3): 1432-1438. DOI: 10.1167/iovs.09-3931.
[10]
DUFFY K R, CROWDER N A, HEYNEN A J, et al. Comparative analysis of structural modifications induced by monocular retinal inactivation and monocular deprivation in the developing cat lateral geniculate nucleus[J]. J Comp Neurol, 2023, 531(12): 1244-1260. DOI: 10.1002/cne.25493.
[11]
SU T, ZHU P W, LI B, et al. Gray matter volume alterations in patients with strabismus and amblyopia: voxel-based morphometry study[J/OL]. Sci Rep, 2022, 12(1): 458 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8748957/. DOI: 10.1038/s41598-021-04184-w.
[12]
XIAO J X, XIE S, YE J T, et al. Detection of abnormal visual cortex in children with amblyopia by voxel-based morphometry[J]. Am J Ophthalmol, 2007, 143(3): 489-493. DOI: 10.1016/j.ajo.2006.11.039.
[13]
LI Q, JIANG Q, GUO M, et al. Grey and white matter changes in children with monocular amblyopia: voxel-based morphometry and diffusion tensor imaging study[J]. Br J Ophthalmol, 2013, 97(4): 524-529. DOI: 10.1136/bjophthalmol-2012-302218.
[14]
LU W, YU X, ZHAO L, et al. Enhanced Gray Matter Volume Compensates for Decreased Brain Activity in the Ocular Motor Area in Children with Anisometropic Amblyopia[J/OL]. Neural Plast, 2020, 2020: 8060869 [2025-04-18]. https://pubmed.ncbi.nlm.nih.gov/32377181/. DOI: 10.1155/2020/8060869.
[15]
TANG Y, LIU R. Surface-Based Morphometry Findings Reveal Structural Alterations of the Brain in Meige Syndrome[J]. Can J Neurol Sci, 2024, 12: 1-9. DOI: 10.1017/cjn.2024.326.
[16]
LIANG M, XIAO H, XIE B, et al. Morphologic changes in the visual cortex of patients with anisometropic amblyopia: a surface-based morphometry study[J/OL]. BMC Neurosci, 2019, 20(1): 39 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6679496/. DOI: 10.1186/s12868-019-0524-6.
[17]
LIANG M L. Functional and structural brain alterationsin children and adults with anisometropic amblyopia: a comparative MRI study, Third Military Medical University, 2017.
[18]
ANKEETA A, KUMARAN S S, SAXENA R, et al. Structural and white matter changes associated with duration of Braille education in early and late blind children[J/OL]. Vis Neurosci, 2021, 38: E011 [2025-04-18]. https://pubmed.ncbi.nlm.nih.gov/34425936/. DOI: 10.1017/S0952523821000080.
[19]
HOU F, LI H, LI P, et al. Grey Matter Hypertrophy and Atrophy in Early-Blind Adolescents: A Surface-Based Morphometric Study[J/OL]. Dis Markers, 2022, 2022: 8550714 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9090530/. DOI: 10.1155/2022/8550714.
[20]
VAN DRUNEN L, DOBBELAAR S, CRONE E A, et al. Genetic and environmental influences on structural brain development from childhood to adolescence: A longitudinal twin study on cortical thickness, surface area, and subcortical volume[J/OL]. Dev Cogn Neurosci, 2024, 68: 101407 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11225697/. DOI: 10.1016/j.dcn.2024.101407.
[21]
PARKER N, PATEL Y, JACKOWSKI A P, et al. Assessment of Neurobiological Mechanisms of Cortical Thinning During Childhood and Adolescence and Their Implications for Psychiatric Disorders[J]. JAMA Psychiatry, 2020, 77(11): 1127-1136. DOI: 10.1001/jamapsychiatry.2020.1495.
[22]
ZHOU Z, WEI D, LIU W, et al. Gene transcriptional expression of cortical thinning during childhood and adolescence[J]. Hum Brain Mapp, 2023, 44(10): 4040-4051. DOI: 10.1002/hbm.26328.
[23]
QIN W, LIU Y, JIANG T, et al. The development of visual areas depends differently on visual experience[J/OL]. PloS One, 2013, 8(1): e53784 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC3538632/. DOI: 10.1371/journal.pone.0053784.
[24]
LI Y D, ZHENG G Y, ZHANG X P, et al. Study on the morphology of cerebral cortex in children with anisometropic amblyopia[J]. Journal of Clinical Radiology, 2025, 44(3): 518-521. DOI: 10.13437/j.cnki.jcr.2025.03.032.
[25]
YIN X, CHEN L, MA M, et al. Altered Brain Structure and Spontaneous Functional Activity in Children With Concomitant Strabismus[J/OL]. Front Hum Neurosci, 2021, 15: 777762 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8634149/. DOI: 10.3389/fnhum.2021.777762.
[26]
ZHENG L Q. Magnetic resonance imaging study of brain structure and function in children with monocular amblyopia[D]. University of Electronic Science and Technology of China, 2021.
[27]
CHEN J J, GAUTHIER C J. The Role of Cerebrovascular-Reactivity Mapping in Functional MRI: Calibrated fMRI and Resting-State fMRI[J/OL]. Front Physiol, 2021, 12: 657362 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8027080/. DOI: 10.3389/fphys.2021.657362.
[28]
KWON D. Brain imaging: fMRI advances make scans sharper and faster[J]. Nature, 2023, 617(7961): 640-642. DOI: 10.1038/d41586-023-01616-7.
[29]
WANG X, CUI D, ZHENG L, et al. Combination of blood oxygen level-dependent functional magnetic resonance imaging and visual evoked potential recordings for abnormal visual cortex in two types of amblyopia[J]. Mol Vis, 2012, 18: 909-919.
[30]
GUPTA S, KUMARAN S S, SAXENA R, et al. BOLD fMRI and DTI in strabismic amblyopes following occlusion therapy[J]. Int Ophthalmol, 2016, 36(4): 557-568. DOI: 10.1007/s10792-015-0159-2.
[31]
ALGAZE A, ROBERTS C, LEGUIRE L, et al. Functional magnetic resonance imaging as a tool for investigating amblyopia in the human visual cortex: a pilot study[J]. J AAPOS, 2002, 6(5): 300-308. DOI: 10.1067/mpa.2002.124902.
[32]
MIKI A, LIU G T, GOLDSMITH Z G, et al. Decreased activation of the lateral geniculate nucleus in a patient with anisometropic amblyopia demonstrated by functional magnetic resonance imaging[J]. Ophthalmologica, 2003, 217(5): 365-369. DOI: 10.1159/000071353.
[33]
HUANG S, HAO S, SI Y, et al. Intelligent classification of major depressive disorder using rs-fMRI of the posterior cingulate cortex[J]. J Affect Disord, 2024, 358: 399-407. DOI: 10.1016/j.jad.2024.03.166.
[34]
WEN Z, KANG Y, ZHANG Y, et al. Disrupted dynamic amplitude of low-frequency fluctuations in patients with active thyroid-associated ophthalmopathy[J/OL]. Front Cell Dev Biol, 2023, 11: 1174688 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10213541/. DOI: 10.3389/fcell.2023.1174688.
[35]
CHEN X, LIAO M, JIANG P, et al. Abnormal spontaneous brain functional activity in adult patients with amblyopia: a resting-state functional magnetic resonance imaging study[J]. Journal of biomedical engineering, 2022, 39(4): 759-766.
[36]
LUO Y. Study on anisometropia and form deprivation amblyopia based on fMRI technique[D]. Zhengzhou University, 2022.
[37]
MA C, JIA J, YE Y J, et al. Effects of acupuncture on vision and visual function in children with anisometropic amblyopia[J]. Zhongguo Zhen Jiu, 2024, 44(2): 153-157. DOI: 10.13703/j.0255-2930.20230313-0003.
[38]
ZHANG X, LIU L, LI Y, et al. Altered local spontaneous brain activity pattern in children with right-eye amblyopia of varying degrees: evidence from fMRI[J]. Neuroradiology, 2023, 65(12): 1757-1766. DOI: 10.1007/s00234-023-03221-x.
[39]
MIN Y L, SU T, SHU Y Q, et al. Altered spontaneous brain activity patterns in strabismus with amblyopia patients using amplitude of low-frequency fluctuation: a resting-state fMRI study[J]. Neuropsychiatr Dis Treat, 2018, 14: 2351-2359. DOI: 10.2147/NDT.S171462.
[40]
MIN Y L. Altered spontaneous brain activity patterns in strabismus withamblyopia patients using amplitude of low-frequency fluctuation[D]. Nanchang University, 2020.
[41]
ZHANG R, REN J, LEI X, et al. Aberrant patterns of spontaneous brain activity in schizophrenia: A resting-state fMRI study and classification analysis[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2024, 134: 111066 [2025-04-18]. https://doi.org/10.1016/j.pnpbp.2024.111066. DOI: 10.1016/j.pnpbp.2024.111066.
[42]
LIN X, DING K, LIU Y, et al. Altered spontaneous activity in anisometropic amblyopia subjects: revealed by resting-state fMRI[J/OL]. PloS One, 2012, 7(8): e43373 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC3427333/. DOI: 10.1371/journal.pone.0043373.
[43]
TAN S W, CAI G Q, LI Q Y, et al. Altered Brain Activity in Strabismic Amblyopic Children as Determined by Regional Homogeneity: A Resting-State Functional Magnetic Resonance Imaging Study[J/OL]. Front Neurosci, 2022, 16: 879253 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9201242/. DOI: 10.3389/fnins.2022.879253.
[44]
SHAO Y, LI Q H, LI B, et al. Altered brain activity in patients with strabismus and amblyopia detected by analysis of regional homogeneity: A resting-state functional magnetic resonance imaging study[J]. Mol Med Rep, 2019, 19(6): 4832-4840. DOI: 10.3892/mmr.2019.10147.
[45]
YANG X, LU L, LI Q, et al. Altered spontaneous brain activity in patients with strabismic amblyopia: A resting-state fMRI study using regional homogeneity analysis[J]. Exp Ther Med, 2019, 18(5): 3877-3884. DOI: 10.3892/etm.2019.8038.
[46]
QI X, FANG J, SUN Y, et al. Altered Functional Brain Network Structure between Patients with High and Low Generalized Anxiety Disorder[J/OL]. Diagnostics (Basel), 2023, 13(7): 1292 [2025-04-18]. https://pmc.ncbi.nlm.nih.-gov/articles/PMC10093329/. DOI: 10.3390/diagnostics13071292.
[47]
LONG Z, SHUANGKUN W, TIAN T, et al. Abnormal dynamics of functional connectivity density and effective connectivity in overactive bladder[J]. Neurourol Urodyn, 2024, 43(8): 1784-1792. DOI: 10.1002/nau.25569.
[48]
CHEN J, HAO J, LIU J, et al. Alternations of interhemispheric functional connectivity in patients with acute acquired concomitant esotropia: a resting state fMRI study using voxel-mirrored homotopic connectivity[J/OL]. Front Neurosci, 2025, 18: 1515675 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11743661/. DOI: 10.3389/fnins.2024.1515675.
[49]
DING K, LIU Y, YAN X, et al. Altered functional connectivity of the primary visual cortex in subjects with amblyopia[J/OL]. Neural Plast, 2013, 2013: 612086 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC3697400/. DOI: 10.1155/2013/612086.
[50]
DAI P, ZHOU X, OU Y, et al. Altered effective connectivity of children and young adults with unilateral amblyopia: a resting-state functional magnetic resonance imaging study[J/OL]. Front Neurosci, 2021, 15: 657576. [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8290343/. DOI: 10.3389/fnins.2021.657576.
[51]
LIU L Q, LI Q Y, ZHANG Z H, et al. Altered functional connectivity of primary visual cortex in adults with strabismus and amblyopia: a resting-state fMRI study[J/OL]. J Integr Neurosci, 2022, 21(1): 4 [2025-04-18]. https://www.imrpress.com/journal/JIN/21/1/10.31083/j.jin2101004. DOI: 10.31083/j.jin2101004.
[52]
SEGHIER M L. Multiple functions of the angular gyrus at high temporal resolution[J]. Brain Struct Funct, 2023, 228(1): 7-46. DOI: 10.1007/s00429-022-02512-y.
[53]
WANG Y, GUAN H, MA L, et al. Learning to read may help promote attention by increasing the volume of the left middle frontal gyrus and enhancing its connectivity to the ventral attention network[J]. Cereb Cortex, 2023, 33(5): 2260-2272. DOI: 10.1093/cercor/bhac206.
[54]
WANG T, LI Q, GUO M, et al. Abnormal functional connectivity density in children with anisometropic amblyopia at resting-state[J]. Brain Res, 2014, 1563: 41-51. DOI: 10.1016/j.brainres.2014.03.015.
[55]
SHI Y D, GE Q M, LIN Q, et al. Functional connectivity density alterations in children with strabismus and amblyopia based on resting-state functional magnetic resonance imaging (fMRI)[J/OL]. BMC Ophthalmol, 2022, 22(1): 49 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8808980/. DOI: 10.1186/s12886-021-02228-3.
[56]
YE Y J, JIA J, SUN Y, et al. Effects of acupuncture on functional connectivity changes of what visual pathway in the brain in cchildren with monocular refractive amblyopia[J]. Journal of Traditional Chinese Medicine, 2023, 64(20): 2101-2108. DOI: 10.13288/j.11-2166/r.2023.20.010.
[57]
LIANG M, XIE B, YANG H, et al. Altered interhemispheric functional connectivity in patients with anisometropic and strabismic amblyopia: a resting-state fMRI study[J]. Neuroradiology, 2017, 59(5): 517-524. DOI: 10.1007/s00234-017-1824-0.
[58]
WANG H R. A resting-state fMRI study of network functional connectivity changes in children with anisometropic amblyopia[D]. Tianjin Medical University, 2018.
[59]
ZHANG H, LIU K, BA R, et al. Histological and molecular classifications of pediatric glioma with time-dependent diffusion MRI-based microstructural mapping[J]. Neuro Oncol, 2023, 25(6): 1146-1156. DOI: 10.1093/neuonc/noad003.
[60]
ROKEM A, TAKEMURA H, BCOK A S, et al. The visual white matter: The application of diffusion MRI and fiber tractography to vision science[J/OL]. J Vis, 2017, 17(2): 4 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC5317208/. DOI: 10.1167/17.2.4.
[61]
BEHLER A, MÜLLER H P, LUDOLPH A C, et al. Diffusion Tensor Imaging in Amyotrophic Lateral Sclerosis: Machine Learning for Biomarker Development[J/OL]. Int J Mol Sci, 2023, 24(3): 1911 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9915541/. DOI: 10.3390/ijms24031911.
[62]
ALLEN B, SCHMITT M A, KUSHNER B J, et al. Retinothalamic White Matter Abnormalities in Amblyopia[J]. Invest Ophthalmol Vis Sci, 2018, 59(2): 921-929. DOI: 10.1167/iovs.17-22930.
[63]
GÜMÜSTAS S, ALTINTAS Ö, ANIK Y, et al. Anterior visual pathways in amblyopia: quantitative assessment with diffusion tensor imaging[J]. J Pediatr Ophthalmol Strabismus, 2013, 50(6): 369-374. DOI: 10.3928/01913913-20131125-04.
[64]
SONG H Y, QI S, TANG H H, et al. MR DTI and DTT study on the development of optic radiation in patients with anisometropia amblyopia[J]. Journal of Sichuan University Medical (science edition), 2010, 41(4): 648-651. DOI: 10.13464/j.scuxbyxb.2010.04.046.
[65]
ALLEN B, SCHMITT M A, KUSHNER B J, et al. Retinothalamic White Matter Abnormalities in Amblyopia[J]. Invest Ophthalmol Vis Sci, 2018, 59(2): 921-929. DOI: 10.1167/iovs.17-22930.
[66]
XIE S, GONG G L, XIAO J X, et al. Underdevelopment of optic radiation in children with amblyopia: a tractography study[J]. Am J Ophthalmol, 2007, 143(4): 642-646. DOI: 10.1016/j.ajo.2006.12.009.
[67]
LI Q, ZHAI L, JIANG Q, et al. Tract-based spatial statistics analysis of white matter changes in children with anisometropic amblyopia[J]. Neurosci Lett, 2015, 597: 7-12. DOI: 10.1016/j.neulet.2015.04.027.
[68]
DUAN Y, NORCIA A M, YEATMAN J D, et al. The Structural Properties of Major White Matter Tracts in Strabismic Amblyopia[J]. Invest Ophthalmol Vis Sci, 2015, 56(9): 5152-5160. DOI: 10.1167/iovs.15-17097.
[69]
JITSUISHI T, HIRONO S, YAMAMOTO T, et al. White matter dissection and structural connectivity of the human vertical occipital fasciculus to link vision-associated brain cortex[J/OL]. Sci Rep, 2020, 10(1): 820 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6972933/. DOI: 10.1038/s41598-020-57837-7.
[70]
SONG S, JEAN S, DENG D, et al. Diffusion spectrum imaging based semi-automatic optic radiation tractography for vision preservation in SEEG-guided radiofrequency thermocoagulation[J]. Seizure, 2024, 114: 61-69. DOI: 10.1016/j.seizure.2023.11.014.
[71]
TSAI T H, SU H T, HSU Y C, et al. White matter microstructural alterations in amblyopic adults revealed by diffusion spectrum imaging with systematic tract-based automatic analysis[J]. Br J Ophthalmol, 2019, 103(4): 511-516. DOI: 10.1136/bjophthalmol-2017-311733.
[72]
WANG J, JI B, LEI Y, et al. Denoising magnetic resonance spectroscopy (MRS) data using stacked autoencoder for improving signal-to-noise ratio and speed of MRS[J]. Med Phys, 2023, 50(12): 7955-7966. DOI: 10.1002/mp.16831.
[73]
NGUYEN B N, SRINIVASAN R, MCKENDRICK A M. Short-term homeostatic visual neuroplasticity in adolescents after two hours of monocular deprivation[J]. IBRO Neurosci Rep, 2023, 14: 419-427. DOI: 10.1016/j.ibneur.2023.04.003.
[74]
MUKERJI A, BYRNE K N, YANG E, et al. Visual cortical γ-aminobutyric acid and perceptual suppression in amblyopia[J/OL]. Front Hum Neurosci, 2022, 16: 949395 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9479630/. DOI: 10.3389/fnhum.2022.949395.
[75]
IP I B, CLARKE W T, WYLLIE A, et al. The relationship between visual acuity loss and GABAergic inhibition in amblyopia[J]. Imaging Neurosci (Camb), 2024, 2: 1-18. DOI: 10.1162/imag_a_00256.
[76]
GONG L, REYNAUD A, WANG Z, et al. Interocular Suppression as Revealed by Dichoptic Masking Is Orientation-Dependent and Imbalanced in Amblyopia[J/OL]. Invest Ophthalmol Vis Sci, 2020, 61(14): 28 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7774058/. DOI: 10.1167/iovs.61.14.28.
[77]
KONUS I, OZSOY E, TURKCUOGLU P, et al. Evaluation of Metabolite Changes in the Occipital Cortex of Patients with Idiopathic Infantile Nystagmus or Bilateral Ametropic Amblyopia by Magnetic Resonance Spectroscopy[J]. Korean J Ophthalmol, 2019, 33(5): 406-413. DOI: 10.3341/kjo.2019.0022.
[78]
HONG S, TOMAR J S, SHEN J. Metabolic coupling between glutamate and N-acetylaspartate in the human brain[J]. J Cereb Blood Flow Metab, 2024, 44(9): 1608-1617. DOI: 10.1177/0271678X241239783.
[79]
CHENG F F, WANG W N, GONG Q Y, et al. Research progress on proton magnetic resonance spectroscopy (1H-MRS) of depression[J]. Sichuan Medical Journal, 2018, 39(8): 958-963. DOI: 10.16252/j.cnki.issn1004-0501-2018.08.030.
[80]
TASO M, ARAMENDÍA-VIDAURRETA V, ENGLUND E K, et al. Update on state-of-the-art for arterial spin labeling (ASL) human perfusion imaging outside of the brain[J]. Magn Reson Med, 2023, 89(5): 1754-1776. DOI: 10.1002/mrm.29609.
[81]
WANG Y G. Study on regional brain function and cerebral perfusion changes in adult amblyopia patients[D]. Peking Union Medical College, 2022.

PREV MRI-based research advances in the glymphatic system in Alzheimer<sup><sup>,</sup></sup>s disease
NEXT Research progress of MRI on the development of cerebral cortex related to fine motor skills in preterm infants
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn