Share:
Share this content in WeChat
X
Review
Research progress of multimodal MRI in mild traumatic brain injury
LÜ Zihan  CUI Jie  ZHONG Yeming  CHE Zigang 

Cite this article as: LÜ Z H, CUI J, ZHONG Y M, et al. Research progress of multimodal MRI in mild traumatic brain injury[J]. Chin J Magn Reson Imaging, 2025, 16(7): 129-134. DOI:10.12015/issn.1674-8034.2025.07.021.


[Abstract] Mild traumatic brain injury (mTBI) accounts for over 80% of all traumatic brain injury (TBI) cases and is one of the common neurological disorders. However, the current understanding of the diagnosis of mTBI and the underlying neurophysiological mechanisms of post-traumatic cognitive changes remains incomplete. This lack of clarity hinders the early diagnosis, treatment decision-making, and prognosis evaluation for mTBI. In recent years, an increasing number of multimodal magnetic resonance imaging (MRI) techniques have been applied to the diagnosis of mTBI. These include functional magnetic resonance imaging (fMRI), arterial spin labeling (ASL) perfusion imaging, susceptibility-weighted imaging (SWI), and diffusion tensor imaging (DTI). These techniques have enhanced our understanding of the neuropathological mechanisms of mTBI from different perspectives. This article reviews the application progress of the above-mentioned multimodal MRI techniques in mTBI and evaluates their advantages and disadvantages, providing new ideas for future research.
[Keywords] mild traumatic brain injury;functional magnetic resonance imaging;arterial spin labeling perfusion imaging;susceptibility-weighted imaging;diffusion tensor imaging

LÜ Zihan   CUI Jie   ZHONG Yeming   CHE Zigang*  

Department of Medical Imaging, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing 211102, China

Corresponding author: CHE Z G, E-mail: chezg@njtrh.org

Conflicts of interest   None.

Received  2024-12-27
Accepted  2025-07-05
DOI: 10.12015/issn.1674-8034.2025.07.021
Cite this article as: LÜ Z H, CUI J, ZHONG Y M, et al. Research progress of multimodal MRI in mild traumatic brain injury[J]. Chin J Magn Reson Imaging, 2025, 16(7): 129-134. DOI:10.12015/issn.1674-8034.2025.07.021.

[1]
BODIEN Y G, BARRA A, TEMKIN N R, et al. Diagnosing level of consciousness: the limits of the Glasgow Coma scale total score[J]. J Neurotrauma, 2021, 38(23): 3295-3305. DOI: 10.1089/neu.2021.0199.
[2]
LEFEVRE-DOGNIN C, COGNÉ M, PERDRIEAU V, et al. Definition and epidemiology of mild traumatic brain injury[J]. Neurochirurgie, 2021, 67(3): 218-221. DOI: 10.1016/j.neuchi.2020.02.002.
[3]
BORGEN I M H, LØVSTAD M, ANDELIC N, et al. Traumatic brain injury-needs and treatment options in the chronic phase: Study protocol for a randomized controlled community-based intervention[J/OL]. Trials, 2020, 21(1): 294 [2024-12-26]. https://pubmed.ncbi.nlm.nih.gov/32216840/. DOI: 10.1186/s13063-020-4195-5.
[4]
LUNKOVA E, GUBERMAN G I, PTITO A, et al. Noninvasive magnetic resonance imaging techniques in mild traumatic brain injury research and diagnosis[J]. Hum Brain Mapp, 2021, 42(16): 5477-5494. DOI: 10.1002/hbm.25630.
[5]
MAVROUDIS I, CIOBICA A, BEJENARIU A C, et al. Cognitive Impairment following Mild Traumatic Brain Injury (mTBI): A Review[J/OL]. Medicina (Kaunas), 2024, 60(3): 380 [2024-12-26]. https://pubmed.ncbi.nlm.nih.gov/38541106/. DOI: 10.3390/medicina60030380.
[6]
CHEN C J, WU C H, LIAO Y P, et al. Working memory in patients with mild traumatic brain injury: functional MR imaging analysis[J]. Radiology, 2012, 264(3): 844-851. DOI: 10.1148/radiol.12112154.
[7]
VAN DER HORN H J, SCHEENEN M E, DE KONING M E, et al. The default mode network as a biomarker of persistent complaints after mild traumatic brain injury: a longitudinal functional magnetic resonance imaging study[J]. J Neurotrauma, 2017, 34(23): 3262-3269. DOI: 10.1089/neu.2017.5185.
[8]
ASTAFIEV S V, WEN J, BRODY D L, et al. A novel gradient echo plural contrast imaging method detects brain tissue abnormalities in patients with TBI without evident anatomical changes on clinical MRI: a pilot study[J]. Mil Med, 2019, 184(Suppl 1): 218-227. DOI: 10.1093/milmed/usy394.
[9]
BYOM L J, WHALEN M, TURKSTRA L S. Working memory for emotions in adolescents and young adults with traumatic brain injury[J]. Brain Impair, 2022, 22(3): 296-310. DOI: 10.1017/BrImp.2021.20.
[10]
RAHMAN R A A, HANAPIAH F A, NIKMAT A W, et al. Effects of concurrent tasks on gait performance in children with traumatic brain injury versus children with typical development[J]. Ann Rehabil Med, 2021, 45(3): 186-196. DOI: 10.5535/arm.21004.
[11]
JONES D T, GRAFF-RADFORD J. Executive dysfunction and the prefrontal cortex[J]. Continuum (Minneap Minn), 2021, 27(6): 1586-1601. DOI: 10.1212/CON.0000000000001009.
[12]
ZHANG J, WANG R P, WANG H L, et al. Activation of brain regions using task-state FMRI in patients with mild traumatic brain injury: a meta-analysis[J]. Int J Clin Exp Pathol, 2020, 13(12): 2918-2926.
[13]
HOLMES S A, SINGH-SALUJA R, CHEN J K, et al. Evaluating task-based brain network activity in pediatric subjects with an mTBI: mechanisms of functional compensation are symptom-level dependent[J]. Brain Inj, 2019, 33(3): 383-393. DOI: 10.1080/02699052.2018.1552023.
[14]
SPELLMAN T, RIGOTTI M, AHMARI S E, et al. Hippocampal-prefrontal input supports spatial encoding in working memory[J]. Nature, 2015, 522(7556): 309-314. DOI: 10.1038/nature14445.
[15]
PAN Y Z, LI X, LIU Y L, et al. Hierarchical brain structural-functional coupling associated with cognitive impairments in mild traumatic brain injury[J]. Cereb Cortex, 2023, 33(12): 7477-7488. DOI: 10.1093/cercor/bhad053.
[16]
MADHAVAN R, JOEL S E, MULLICK R, et al. Longitudinal resting state functional connectivity predicts clinical outcome in mild traumatic brain injury[J]. J Neurotrauma, 2019, 36(5): 650-660. DOI: 10.1089/neu.2018.5739.
[17]
D'SOUZA M M, KUMAR M, CHOUDHARY A, et al. Alterations of connectivity patterns in functional brain networks in patients with mild traumatic brain injury: a longitudinal resting-state functional magnetic resonance imaging study[J]. Neuroradiol J, 2020, 33(2): 186-197. DOI: 10.1177/1971400920901706.
[18]
ZHANG D B, ZHU P Y, YIN B, et al. Frontal white matter hyperintensities effect on default mode network connectivity in acute mild traumatic brain injury[J/OL]. Front Aging Neurosci, 2022, 13: 793491 [2024-12-26]. https://pubmed.ncbi.nlm.nih.gov/35250532/. DOI: 10.3389/fnagi.2021.793491.
[19]
LEFEBVRE E, D'ANGIULLI A. Imagery-mediated verbal learning depends on vividness-familiarity interactions: the possible role of dualistic resting state network activity interference[J/OL]. Brain Sci, 2019, 9(6): 143 [2024-12-26]. https://pubmed.ncbi.nlm.nih.gov/31216699/. DOI: 10.3390/brainsci9060143.
[20]
LI F F, LU L Y, SHANG S A, et al. Altered static and dynamic functional network connectivity in post-traumatic headache[J/OL]. J Headache Pain, 2021, 22(1): 137 [2024-12-26]. https://pubmed.ncbi.nlm.nih.gov/34773973/. DOI: 10.1186/s10194-021-01348-x.
[21]
AMIR J, NAIR J K R, DEL CARPIO-O'DONOVAN R, et al. Atypical resting state functional connectivity in mild traumatic brain injury[J/OL]. Brain Behav, 2021, 11(8): e2261 [2024-12-26]. https://pubmed.ncbi.nlm.nih.gov/34152089/. DOI: 10.1002/brb3.2261.
[22]
LI F F, LIU Y, LU L Y, et al. Rich-club reorganization of functional brain networks in acute mild traumatic brain injury with cognitive impairment[J]. Quant Imaging Med Surg, 2022, 12(7): 3932-3946. DOI: 10.21037/qims-21-915.
[23]
WANG Y, BARTELS H M, NELSON L D. A systematic review of ASL perfusion MRI in mild TBI[J]. Neuropsychol Rev, 2023, 33(1): 160-191. DOI: 10.1007/s11065-020-09451-7.
[24]
DUAN M, LIU Y, LI F F, et al. Cerebral blood flow network differences correlated with cognitive impairment in mild traumatic brain injury[J/OL]. Front Neurosci, 2022, 16: 969971 [2024-12-26]. https://pubmed.ncbi.nlm.nih.gov/35937870/. DOI: 10.3389/fnins.2022.969971.
[25]
CLARK A L, WEIGAND A J, BANGEN K J, et al. Repetitive mTBI is associated with age-related reductions in cerebral blood flow but not cortical thickness[J]. J Cereb Blood Flow Metab, 2021, 41(2): 431-444. DOI: 10.1177/0271678x19897443.
[26]
ZHANG Y J, SHANG S A, HU L Y, et al. Cerebral blood flow and its connectivity deficits in patients with lung cancer after chemotherapy[J/OL]. Front Mol Biosci, 2022, 9: 761272 [2024-12-26]. https://pubmed.ncbi.nlm.nih.gov/35402514/. DOI: 10.3389/fmolb.2022.761272.
[27]
XIAO P, HUA K L, CHEN F, et al. Abnormal cerebral blood flow and volumetric brain morphometry in patients with obstructive sleep apnea[J/OL]. Front Neurosci, 2022, 16: 934166 [2024-12-26]. https://pubmed.ncbi.nlm.nih.gov/35873812/. DOI: 10.3389/fnins.2022.934166.
[28]
CHURCHILL N W, HUTCHISON M G, GRAHAM S J, et al. Mapping brain recovery after concussion: from acute injury to 1 year after medical clearance[J/OL]. Neurology, 2019, 93(21): e1980-e1992 [2024-12-26]. https://pubmed.ncbi.nlm.nih.gov/31619480/. DOI: 10.1212/WNL.0000000000008523.
[29]
TAI H F, HUA T T, ZHANG Z Q, et al. Characteristic cerebral perfusion pattern in neuronal intranuclear inclusion disease[J/OL]. Front Neurosci, 2022, 16: 1081383 [2024-12-26]. https://pubmed.ncbi.nlm.nih.gov/36570826/. DOI: 10.3389/fnins.2022.1081383.
[30]
STEPHENS J A, LIU P Y, LU H Z, et al. Cerebral blood flow after mild traumatic brain injury: associations between symptoms and post-injury perfusion[J]. J Neurotrauma, 2018, 35(2): 241-248. DOI: 10.1089/neu.2017.5237.
[31]
MEIER T B, BELLGOWAN P S F, SINGH R, et al. Recovery of cerebral blood flow following sports-related concussion[J]. JAMA Neurol, 2015, 72(5): 530-538. DOI: 10.1001/jamaneurol.2014.4778.
[32]
BAI G, BAI L, CAO J, et al. Sex differences in cerebral perfusion changes after mild traumatic brain injury: Longitudinal investigation and correlation with outcome[J/OL]. Brain Res, 2019, 1708: 93-99 [2024-12-26]. https://pubmed.ncbi.nlm.nih.gov/30553777/. DOI: 10.1016/j.brainres.2018.12.018.
[33]
TONDUTI D, PICHIECCHIO A, UGGETTI C, et al. How to look for intracranial calcification in children with neurological disorders: CT, MRI, or both of them?[J]. Neurol Sci, 2022, 43(3): 2043-2050. DOI: 10.1007/s10072-021-05510-w.
[34]
OGINO Y, BERNAS T, GREER J E, et al. Axonal injury following mild traumatic brain injury is exacerbated by repetitive insult and is linked to the delayed attenuation of NeuN expression without concomitant neuronal death in the mouse[J/OL]. Brain Pathol, 2022, 32(2): e13034 [2024-12-26]. https://pubmed.ncbi.nlm.nih.gov/34729854/. DOI: 10.1111/bpa.13034.
[35]
PRINCE C, BRUHNS M E. Evaluation and treatment of mild traumatic brain injury: the role of neuropsychology[J/OL]. Brain Sci, 2017, 7(8): 105 [2024-12-26]. https://pubmed.ncbi.nlm.nih.gov/28817065/. DOI: 10.3390/brainsci7080105.
[36]
STUDERUS-GERMANN A M, GAUTSCHI O P, BONTEMPI P, et al. Central nervous system microbleeds in the acute phase are associated with structural integrity by DTI one year after mild traumatic brain injury: a longitudinal study[J]. Neurol Neurochir Pol, 2018, 52(6): 710-719. DOI: 10.1016/j.pjnns.2018.08.011.
[37]
ANDERSON J F I, HIGSON L, WU M H, et al. Cerebral microhaemorrhage count is related to processing speed, but not level of symptom reporting, independently of age, psychological status and premorbid functioning, after first-ever mild traumatic brain injury[J]. Brain Imaging Behav, 2023, 17(6): 608-618. DOI: 10.1007/s11682-023-00788-0.
[38]
DE HAAN S, DE GROOT J C, JACOBS B, et al. The association between microhaemorrhages and post - traumatic functional outcome in the chronic phase after mild traumatic brain injury[J]. Neuroradiology, 2017, 59(10): 963-969. DOI: 10.1007/s00234-017-1898-8.
[39]
WILLIS E F, MACDONALD K P A, NGUYEN Q H, et al. Repopulating microglia promote brain repair in an IL-6-dependent manner[J/OL]. Cell, 2020, 180(5): 833-846.e16 [2024-12-26]. https://pubmed.ncbi.nlm.nih.gov/32142677/. DOI: 10.1016/j.cell.2020.02.013.
[40]
KÖRNYEI B S, SZABÓ V, PERLAKI G, et al. Cerebral microbleeds may be less detectable by susceptibility weighted imaging MRI from 24 to 72 hours after traumatic brain injury[J/OL]. Front Neurosci, 2021, 15: 711074 [2024-12-26]. https://pubmed.ncbi.nlm.nih.gov/34658762/. DOI: 10.3389/fnins.2021.711074.
[41]
BOURKE N J, DEMARCHI C, DE SIMONI S, et al. Brain volume abnormalities and clinical outcomes following paediatric traumatic brain injury[J]. Brain, 2022, 145(8): 2920-2934. DOI: 10.1093/brain/awac130.
[42]
CHEN Q L, CHEN X B, XU L Y, et al. Traumatic axonal injury: neuropathological features, postmortem diagnostic methods, and strategies[J]. Forensic Sci Med Pathol, 2022, 18(4): 530-544. DOI: 10.1007/s12024-022-00522-0.
[43]
PANKATZ L, ROJCZYK P, SEITZ-HOLLAND J, et al. Adverse outcome following mild traumatic brain injury is associated with microstructure alterations at the gray and white matter boundary[J/OL]. J Clin Med, 2023, 12(16): 5415 [2024-12-26]. https://pubmed.ncbi.nlm.nih.gov/37629457/. DOI: 10.3390/jcm12165415.
[44]
SERPA M, DOSHI J, JOAQUIM H P G, et al. Inflammatory cytokines and white matter microstructure in the acute phase of first-episode psychosis: a longitudinal study[J/OL]. Schizophr Res, 2023, 257: 5-18 [2024-12-26]. https://pubmed.ncbi.nlm.nih.gov/37230043/. DOI: 10.1016/j.schres.2023.05.005.
[45]
KIM E, YOO R E, SEONG M Y, et al. A systematic review and data synthesis of longitudinal changes in white matter integrity after mild traumatic brain injury assessed by diffusion tensor imaging in adults[J/OL]. Eur J Radiol, 2022, 147: 110117 [2024-12-26]. https://pubmed.ncbi.nlm.nih.gov/34973540/. DOI: 10.1016/j.ejrad.2021.110117.
[46]
PALACIOS E M, OWEN J P, YUH E L, et al. The evolution of white matter microstructural changes after mild traumatic brain injury: a longitudinal DTI and NODDI study[J/OL]. Sci Adv, 2020, 6(32): eaaz6892 [2024-12-26]. https://pubmed.ncbi.nlm.nih.gov/32821816/. DOI: 10.1126/sciadv.aaz6892.
[47]
VEERAMUTHU V, NARAYANAN V, KUO T L, et al. Diffusion tensor imaging parameters in mild traumatic brain injury and its correlation with early neuropsychological impairment: a longitudinal study[J]. J Neurotrauma, 2015, 32(19): 1497-1509. DOI: 10.1089/neu.2014.3750.
[48]
STRAUSS S B, KIM N, BRANCH C A, et al. Bidirectional changes in anisotropy are associated with outcomes in mild traumatic brain injury[J]. AJNR Am J Neuroradiol, 2016, 37(11): 1983-1991. DOI: 10.3174/ajnr.A4851.
[49]
SWAMINATHAN P, HAMZAH N, NARAYANAN V, et al. A novel application of neurite orientation dispersion and density imaging to differentiate cognitively recovered versus non-recovered following mild traumatic brain injury[J]. NeuroAsia, 2024, 29(4): 1141-1154. DOI: 10.54029/2024exe.
[50]
STEIN A, VINH TO X, NASRALLAH F A, et al. Evidence of ongoing cerebral microstructural reorganization in children with persisting symptoms following mild traumatic brain injury: a NODDI DTI analysis[J]. J Neurotrauma, 2024, 41(1/2): 41-58. DOI: 10.1089/neu.2023.0196.
[51]
OEHR L E, YANG J Y, CHEN J, et al. Investigating white matter tract microstructural changes at six-twelve weeks following mild traumatic brain injury: a combined diffusion tensor imaging and neurite orientation dispersion and density imaging study[J]. J Neurotrauma, 2021, 38(16): 2255-2263. DOI: 10.1089/neu.2020.7310.

PREV Research progress of MRI on the development of cerebral cortex related to fine motor skills in preterm infants
NEXT Advances in multimodal MRI studies of brain alterations induced by acute mountain sickness
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn