Share:
Share this content in WeChat
X
Review
Advances in multimodal MRI studies of brain alterations induced by acute mountain sickness
GUO Ya  BAO Haihua  TAO Tao  WEN Shengbao  BAI Yanling  HE Chunlan 

Cite this article as: GUO Y, BAO H H, TAO T, et al. Advances in multimodal MRI studies of brain alterations induced by acute mountain sickness[J]. Chin J Magn Reson Imaging, 2025, 16(7): 135-139, 146. DOI:10.12015/issn.1674-8034.2025.07.022.


[Abstract] Acute mountain sickness (AMS) is the most common form of altitude illness. With the booming tourism industry, frequent military operations, and increasing popularity of outdoor adventures, the number of individuals entering high-altitude regions has risen steadily, making early AMS diagnosis critical to preventing progression to severe, life-threatening stages. Recent advances in neuroimaging have opened new avenues for clinical diagnosis and in-depth analysis of AMS pathophysiology. This article reviews the latest applications of multimodal MRI in assessing brain volume, microstructural damage, and cerebral blood flow perfusion, offering novel perspectives for AMS diagnosis and mechanistic exploration.
[Keywords] acute mountain sickness;magnetic resonance imaging;brain volume;cerebral perfusion

GUO Ya1, 2   BAO Haihua2*   TAO Tao2, 4   WEN Shengbao1, 2   BAI Yanling2   HE Chunlan3  

1 School of Clinical Medicine, Qinghai University, Xining 810000, China

2 Department of Medical Imaging, Affiliated Hospital of Qinghai University, Xining 810000, China

3 Department of Laboratory Medicine, Affiliated Hospital of Qinghai University, Xining 810000, China

4 Department of Urology, Affiliated Hospital of Qinghai University, Xining 810000, China

Corresponding author: BAO H H, E-mail: baohelen2@sina.com

Conflicts of interest   None.

Received  2025-04-17
Accepted  2025-07-07
DOI: 10.12015/issn.1674-8034.2025.07.022
Cite this article as: GUO Y, BAO H H, TAO T, et al. Advances in multimodal MRI studies of brain alterations induced by acute mountain sickness[J]. Chin J Magn Reson Imaging, 2025, 16(7): 135-139, 146. DOI:10.12015/issn.1674-8034.2025.07.022.

[1]
GATTERER H. Altitude illnesses[J/OL]. Nat Rev Dis Primers, 2024, 10(1): 43 [2025-04-15]. https://doi.org/10.1038/s41572-024-00526-w. DOI: 10.1038/s41572-024-00526-w.
[2]
ROACH R C, HACKETT P H, OELZ O, et al. The 2018 Lake Louise Acute Mountain Sickness Score[J]. High Alt Med Biol, 2018, 19(1): 4-6. DOI: 10.1089/ham.2017.0164.
[3]
LUKS A M, HACKETT P H. Medical Conditions and High-Altitude Travel[J]. N Engl J Med, 2022, 386(4): 364-373. DOI: 10.1056/NEJMra2104829.
[4]
MALLET R T, BURTSCHER J, PIALOUX V, et al. Molecular Mechanisms of High-Altitude Acclimatization[J/OL]. Int J Mol Sci, 2023, 24(2): 1698 [2025-04-15]. https://www.mdpi.com/1422-0067/24/2/1698. DOI: 10.3390/ijms24021698.
[5]
ZHOU Y, DING H, LIANG H, et al. Global research trends and emerging hotspots in acute high altitude illness: a bibliometric analysis and review (1937-2024)[J/OL]. Rev Environ Health, 2025 [2025-04-17]. https://doi.org/10.1515/reveh-2024-0144. DOI: 10.1515/reveh-2024-0144.
[6]
LI W, ZHANG M, HU Y, et al. Acute mountain sickness prediction: a concerto of multidimensional phenotypic data and machine learning strategies in the framework of predictive, preventive, and personalized medicine[J]. EPMA J, 2025, 16(2): 265-284. DOI: 10.1007/s13167-025-00404-9.
[7]
SHEN T C, LIN M C, LIN C L, et al. Acute mountain sickness on Jade Mountain: Results from the real-world practice (2018-2019)[J]. J Formos Med Assoc, 2024, 123(11): 1161-1166. DOI: 10.1016/j.jfma.2024.01.030.
[8]
GOVES J S L, JOYCE K E, BROUGHTON S, et al. Pulse oximetry for the prediction of acute mountain sickness: A systematic review[J]. Exp Physiol, 2024, 109(12): 2057-2072. DOI: 10.1113/EP091875.
[9]
LI X, ZHU B, DONG N, et al. Early Detection of High‐Altitude Hypoxic Brain Injury by In Vivo Electrochemistry[J/OL]. Angew Chem Int Ed, 2025, 64(4): e202416395 [2025-04-17]. https://onlinelibrary.wiley.com/doi/10.1002/anie.202416395. DOI: 10.1002/anie.202416395.
[10]
WANG B, CHEN S, SONG J, et al. Recent advances in predicting acute mountain sickness: from multidimensional cohort studies to cutting-edge model applications[J/OL]. Front Physiol, 2024, 15: 1397280 [2025-04-17]. https://www.frontiersin.org/articles/10.3389/fphys.2024.1397280/full. DOI: 10.3389/fphys.2024.1397280.
[11]
BERKEMEIER Q, FIGUEIREDO P, LANDSPURG S, et al. Elevated sympathoadrenal response following active ascent to 3, 600m is not associated with acute mountain sickness[J/OL]. Physiology, 2024, 39(S1): 2508 [2025-04-22]. https://journals.physiology.org/doi/10.1152/physiol.2024.39.S1.2508. DOI: 10.1152/physiol.2024.39.S1.2508.
[12]
LIU X Y, LUO Y J. Advances and Evolution in the Diagnostic Criteria of Acute Mountain Sickness[J]. J Prev Med Chin PLA, 2019, 37(10): 188-192. DOI: 10.13704/j.cnki.jyyx.2019.10.070.
[13]
ANDERSON P J, WOOD-WENTZ C M, BAILEY K R, et al. Objective Versus Self-Reported Sleep Quality at High Altitude[J]. High Alt Med Biol, 2023, 24(2): 144-148. DOI: 10.1089/ham.2017.0078.
[14]
MAHAT B, THAPA B, BANERJEE I, et al. Sleep Quality Among Pilgrims at High Altitude: A Cross-Sectional Study From Gosaikunda Lake, Nepal (4380 m)[J/OL]. Cureus, 2024, 16(10): e72604 [2025-04-18]. https://pubmed.ncbi.nlm.nih.gov/39610624/. DOI: 10.7759/cureus.72604.
[15]
CHEN R, WANG Y, ZHANG C, et al. Assessment of Acute Mountain Sickness Using 1993 and 2018 Versions of the Lake Louise Score in a Large Chinese Cohort[J]. High Alt Med Biol, 2021, 22(4): 362-368. DOI: 10.1089/ham.2021.0031.
[16]
RICHALET J P, JULIA C, LHUISSIER F J. Evaluation of the Lake Louise Score for Acute Mountain Sickness and Its 2018 Version in a Cohort of 484 Trekkers at High Altitude[J]. High Alt Med Biol, 2021, 22(4): 353-361. DOI: 10.1089/ham.2020.0226.
[17]
WOOLCOTT O O. The Lake Louise Acute Mountain Sickness Score: Still a Headache[J]. High Alt Med Biol, 2021, 22(4): 351-352. DOI: 10.1089/ham.2021.0110.
[18]
SAVIOLI G, CERESA I F, GORI G, et al. Pathophysiology and Therapy of High-Altitude Sickness: Practical Approach in Emergency and Critical Care[J/OL]. J Clin Med, 2022, 11(14): 3937 [2025-04-17]. https://www.mdpi.com/2077-0383/11/14/3937. DOI: 10.3390/jcm11143937.
[19]
MEIER D, COLLET T H, LOCATELLI I, et al. Does This Patient Have Acute Mountain Sickness?: The Rational Clinical Examination Systematic Review[J/OL]. JAMA, 2017, 318(18): 1810 [2025-02-27]. http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2017.16192. DOI: 10.1001/jama.2017.16192.
[20]
WU Y, ZHAO W, LIU B, et al. Assessment of Acute Mountain Sickness: Comparing the Chinese AMS Score to the Lake Louise Score[J/OL]. High Alt Med Biol, 2024: ham.2023.0033 [2025-02-27]. https://www.liebertpub.com/doi/10.1089/ham.2023.0033. DOI: 10.1089/ham.2023.0033.
[21]
LIU B, YUAN M, YANG M, et al. The Effect of High-Altitude Hypoxia on Neuropsychiatric Functions[J]. High Alt Med Biol, 2024, 25(1): 26-41. DOI: 10.1089/ham.2022.0136.
[22]
CHEN L, WU S Z, LUO F M. Status of Research on Molecular Mechanisms and Management of Acute Mountain Sickness[J]. J Sichuan Univ ( Med Sci ), 2024, 55(6): 1418-1423. DOI: 10.12182/20241160603.
[23]
PHAM K, FROST S, PARIKH K, et al. Inflammatory gene expression during acute high‐altitude exposure[J]. J Physiol, 2022, 600(18): 4169-4186. DOI: 10.1113/JP282772.
[24]
GUO H, WANG Q, LI T, et al. IL-2, IL-17A and TNF‐α hold potential as biomarkers for predicting acute mountain sickness prior to ascent[J/OL]. Cytokine, 2024, 181: 156694 [2025-04-20]. https://linkinghub.elsevier.com/retrieve/pii/S1043466624001972. DOI: 10.1016/j.cyto.2024.156694.
[25]
XIONG Y, WANG Y, XIONG Y, et al. Protective effect of Salidroside on hypoxia‐related liver oxidative stress and inflammation via Nrf2 and JAK2/STAT3 signaling pathways[J]. Food Sci Nutr, 2021, 9(9): 5060-5069. DOI: 10.1002/fsn3.2459.
[26]
WANG Z, GUO Q, MA J, et al. Protective effect of salidroside on lung tissue in rats exposed rapidly to high altitude[J]. J Zhejiang Univ (Med Sci), 2022, 51(4): 422-429. DOI: 10.3724/zdxbyxb-2022-0157.
[27]
SONG D, ZHAO M, FENG L, et al. Salidroside attenuates acute lung injury via inhibition of inflammatory cytokine production[J/OL]. Biomed Pharmacother, 2021, 142: 111949 [2025-04-21]. https://linkinghub.elsevier.com/retrieve/pii/S0753332221007319. DOI: 10.1016/j.biopha.2021.111949.
[28]
JIANG S, FAN F, YANG L, et al. Salidroside attenuates high altitude hypobaric hypoxia-induced brain injury in mice via inhibiting NF-κB/NLRP3 pathway[J/OL]. Eur J Pharmacol, 2022, 925: 175015 [2025-04-21]. https://linkinghub.elsevier.com/retrieve/pii/S001429992200276X. DOI: 10.1016/j.ejphar.2022.175015.
[29]
ZHANG X, ZHANG J. The human brain in a high altitude natural environment: A review[J/OL]. Front Hum Neurosci, 2022, 16: 915995 [2025-04-15]. https://www.frontiersin.org/articles/10.3389/fnhum.2022.915995/full. DOI: 10.3389/fnhum.2022.915995.
[30]
WILSON M H. Monro-Kellie 2.0: The dynamic vascular and venous pathophysiological components of intracranial pressure[J]. J Cereb Blood Flow Metab, 2016, 36(8): 1338-1350. DOI: 10.1177/0271678X16648711.
[31]
POUDEL S, WAGLE L, GHALE M, et al. Risk factors associated with high altitude sickness among travelers: A case control study in Himalaya district of Nepal[J/OL]. PLoS Global Public Health, 2025, 5(2): e0004241 [2025-04-17]. https://dx.plos.org/10.1371/journal.pgph.0004241. DOI: 10.1371/journal.pgph.0004241.
[32]
BURTSCHER J, GATTERER H, NIEDERSEER D, et al. Flying to high-altitude destinations[J]. Minerva Med, 2025, 116(1): 43-61. DOI: 10.23736/S0026-4806.24.09286-3.
[33]
ZHAO H, WANG H, WANG C, et al. Demographic features in patients with acute mountain sickness[J/OL]. Eur J Intern Med, 2025: S0953620525001244 [2025-04-17]. https://linkinghub.elsevier.com/retrieve/pii/S0953620525001244. DOI: 10.1016/j.ejim.2025.03.030.
[34]
WALDNER N F, HARTMANN S E, MURALT L, et al. Oxygen saturation and acute mountain sickness during repeated altitude exposures simulating high-altitude working schedules[J/OL]. Sci Rep, 2025, 15(1): 12987 [2025-04-18]. https://www.nature.com/articles/s41598-025-97554-7. DOI: 10.1038/s41598-025-97554-7.
[35]
SIBOMANA I, FOOSE D P, RAYMER M L, et al. Urinary Metabolites as Predictors of Acute Mountain Sickness Severity[J/OL]. Front Physiol, 2021, 12: 709804 [2025-04-17]. https://www.frontiersin.org/articles/10.3389/fphys.2021.709804/full. DOI: 10.3389/fphys.2021.709804.
[36]
KOKLESOVA L, MAZURAKOVA A, SAMEC M, et al. Mitochondrial health quality control: measurements and interpretation in the framework of predictive, preventive, and personalized medicine[J]. EPMA J, 2022, 13(2): 177-193. DOI: 10.1007/s13167-022-00281-6.
[37]
GOLUBNITSCHAJA O, KAPINOVA A, SARGHEINI N, et al. Mini-encyclopedia of mitochondria-relevant nutraceuticals protecting health in primary and secondary care-clinically relevant 3PM innovation[J]. EPMA J, 2024, 15(2): 163-205. DOI: 10.1007/s13167-024-00358-4.
[38]
XIAO Y, XIAO X, ZHANG X, et al. Mediterranean diet in the targeted prevention and personalized treatment of chronic diseases: evidence, potential mechanisms, and prospects[J]. EPMA J, 2024, 15(2): 207-220. DOI: 10.1007/s13167-024-00360-w.
[39]
ZHOU S, DONG H, HUANG P, et al. Changes in body composition during acute exposure to high altitude is related to acute mountain sickness[J/OL]. Travel Med Infect Dis, 2025, 64: 102815 [2025-04-17]. https://linkinghub.elsevier.com/retrieve/pii/S1477893925000213. DOI: 10.1016/j.tmaid.2025.102815.
[40]
ZHU H, YANG Y, LI Z, et al. An integrated network pharmacology and metabolomics approach to reveal the immunomodulatory mechanism of Brassica rapa L. (Tibetan Turnip) in fatigue mice[J]. Food Funct, 2022, 13(21): 11097-11110. DOI: 10.1039/D2FO02308C.
[41]
JIANG S Y, DONG L P, TONG P, et al. Abnormal gray matter volume of MRI in the somatic symptoms of depression[J]. Chin J Nerv Ment Dis, 2024, 50(1): 17-22. DOI: 10.3969/j.issn.1002-0152.2024.01.003.
[42]
WANG Y, ZHAO K, ZHU Z L, et al. Altered brain morphometry and structural covariant networks based on cortical thickness in Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2024, 15(8): 52-58. DOI: 10.12015/issn.1674-8034.2024.08.008.
[43]
CHEN M, ZHANG G, WANG W J, et al. Application of synthetic MRI combined with VBM brain partition in the diagnosis of early Parkinson's disease[J]. Chin J Magn Reson Imaging, 2023, 14(10): 20-25. DOI: 10.12015/issn.1674-8034.2023.10.004.
[44]
LAWLEY J S, ALPERIN N, BAGCI A M, et al. Normobaric hypoxia and symptoms of acute mountain sickness: Elevated brain volume and intracranial hypertension[J]. Ann Neurol, 2014, 75(6): 890-898. DOI: 10.1002/ana.24171.
[45]
SAGOO R S, HUTCHINSON C E, WRIGHT A, et al. Magnetic Resonance investigation into the mechanisms involved in the development of high-altitude cerebral edema[J]. J Cereb Blood Flow Metab, 2017, 37(1): 319-331. DOI: 10.1177/0271678X15625350.
[46]
ALPERIN N J, LEE S H, LOTH F, et al. MR-Intracranial Pressure (ICP): A Method to Measure Intracranial Elastance and Pressure Noninvasively by Means of MR Imaging: Baboon and Human Study[J]. Radiology, 2000, 217(3): 877-885. DOI: 10.1148/radiology.217.3.r00dc42877.
[47]
SAHU S, PANDA N, SWAIN A, et al. Assessment of the Accuracy of Ultrasonographically Measured Optic Nerve Sheath Diameter as a Surrogate for the Detection of Intracranial Hypertension Compared to Optic Nerve Sheath Diameter Measured by MRI: A Prospective Observational Study[J/OL]. Cureus, 2024, 16(12): e76655 [2025-04-15]. https://pubmed.ncbi.nlm.nih.gov/39886717/. DOI: 10.7759/cureus.76655.
[48]
KULA A Y, POLAT Y B, ATASOY B, et al. Non-invasive estimation of cerebrospinal fluid pressure in idiopathic intracranial hypertension: magnetic resonance imaging analysis of optic nerve and eyeball[J]. Acta Neurol Belg, 2025, 125(1): 61-68. DOI: 10.1007/s13760-024-02620-y.
[49]
STRAPAZZON G, BRUGGER H, DAL CAPPELLO T, et al. Factors associated with optic nerve sheath diameter during exposure to hypobaric hypoxia[J]. Neurology, 2014, 82(21): 1914-1918. DOI: 10.1212/WNL.0000000000000457.
[50]
VERGES S, RUPP T, VILLIEN M, et al. Multiparametric Magnetic Resonance Investigation of Brain Adaptations to 6 Days at 4350 m[J/OL]. Front Physiol, 2016, 7: 303 [2025-04-15]. http://journal.frontiersin.org/Article/10.3389/fphys.2016.00393/abstract. DOI: 10.3389/fphys.2016.00393.
[51]
XIE Y, SUN Y, SHAO Y, et al. Impact of Acute Short-Term Hypobaric Hypoxia on Anterior Chamber Geometry[J]. J Glaucoma, 2025, 34(2): 136-143. DOI: 10.1097/IJG.0000000000002498.
[52]
BIN C H, LEE S J. Teaching Neuro Images : Reversible splenial cytotoxic edema in acute mountain sickness[J/OL]. Neurology, 2011, 77(16): e94 [2025-04-15]. https://www.neurology.org/doi/10.1212/WNL.0b013e318233b326. DOI: 10.1212/WNL.0b013e318233b326.
[53]
RUPP T, JUBEAU M, LAMALLE L, et al. Cerebral Volumetric Changes Induced by Prolonged Hypoxic Exposure and Whole-Body Exercise[J]. J Cereb Blood Flow Metab, 2014, 34(11): 1802-1809. DOI: 10.1038/jcbfm.2014.148.
[54]
LONG C, BAO H. Study of high-altitude cerebral edema using multimodal imaging[J/OL]. Front Neurol, 2023, 13: 1041280 [2025-04-15]. https://www.frontiersin.org/articles/10.3389/fneur.2022.1041280/full. DOI: 10.3389/fneur.2022.1041280.
[55]
LONG C Y, BAO H H, Multimodal MRI manifestations of high altitude cerebral edema[J]. Chin J Magn Reson Imaging, 2023, 14(2): 21-26, 55. DOI: 10.12015/issn.1674-8034.2023.02.004.
[56]
WANG H, ZHANG C, QIU Y, et al. Dysfunction of the Blood-brain Barrier in Cerebral Microbleeds: from Bedside to Bench[J/OL]. Aging and disease, 2021, 12(8): 1898 [2025-04-15]. http://www.aginganddisease.org/EN/10.14336/AD.2021.0514. DOI: 10.14336/AD.2021.0514.
[57]
KALLENBERG K, DEHNERT C, DÖRFLER A, et al. Microhemorrhages in Nonfatal High-Altitude Cerebral Edema[J]. J Cereb Blood Flow Metab, 2008, 28(9): 1635-1642. DOI: 10.1038/jcbfm.2008.55.
[58]
TURNER R E F, GATTERER H, FALLA M, et al. High-altitude cerebral edema: its own entity or end-stage acute mountain sickness?[J]. J Appl Physiol, 2021, 131(1): 313-325. DOI: 10.1152/japplphysiol.00861.2019.
[59]
BILLER A, BADDE S, HECKEL A, et al. Exposure to 16 h of normobaric hypoxia induces ionic edema in the healthy brain[J/OL]. Nat Commun, 2021, 12(1): 5987 [2025-04-15]. https://www.nature.com/articles/s41467-021-26116-y. DOI: 10.1038/s41467-021-26116-y.
[60]
WILSON M H, IMRAY C H E. The cerebral venous system and hypoxia[J]. J Appl Physiol, 2016, 120(2): 244-250. DOI: 10.1152/japplphysiol.00327.2015.
[61]
LAWLEY J S, OLIVER S J, MULLINS P G, et al. Investigation of Whole-Brain White Matter Identifies Altered Water Mobility in the Pathogenesis of High-Altitude Headache[J]. J Cereb Blood Flow Metab, 2013, 33(8): 1286-1294. DOI: 10.1038/jcbfm.2013.83.
[62]
LIU W, LIU J, LOU X, et al. A longitudinal study of cerebral blood flow under hypoxia at high altitude using 3D pseudo-continuous arterial spin labeling[J/OL]. Sci Rep, 2017, 7(1): 43246 [2025-04-15]. https://www.nature.com/articles/srep43246. DOI: 10.1038/srep43246.
[63]
FALCON C, MONTESINOS P, VÁCLAVŮ L, et al. Time‐encoded ASL reveals lower cerebral blood flow in the early AD continuum[J]. Alzheimer's Dement, 2024, 20(8): 5183-5197. DOI: 10.1002/alz.14059.
[64]
LIANG Y, GAO Z Z, CHEN H Y, et al. Assessment of Dynamic Cerebral Autoregulation During Long‐Term Exposure to High Altitude in Normal Subjects by Ultrasonography[J]. J Ultrasound Med, 2024, 43(8): 1441-1448. DOI: 10.1002/jum.16467.
[65]
VILLIEN M, BOUZAT P, RUPP T, et al. Changes in cerebral blood flow and vasoreactivity to CO2 measured by arterial spin labeling after 6 days at 4350m[J]. Neuroimage, 2013, 72: 272-279. DOI: 10.1016/j.neuroimage.2013.01.066.
[66]
ZHANG H, FENG J, ZHANG S Y, et al. Predicting acute mountain sickness using regional sea-level cerebral blood flow[J]. Biomed Environ Sci, 2024, 37(8): 887-896. DOI: 10.3967/bes2024.100.

PREV Research progress of multimodal MRI in mild traumatic brain injury
NEXT Research advances in multimodal magnetic resonance imaging for brain structural and functional alterations in chronic mountain sickness
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn