Share:
Share this content in WeChat
X
Review
Research advances in multimodal magnetic resonance imaging for brain structural and functional alterations in chronic mountain sickness
HOU Yuyin  WEN Shengbao  ZHOU Boqi  YANG Airu  CAI Shaoyin  ZOU Menglong 

Cite this article as: HOU Y Y, WEN S B, ZHOU B Q, et al. Research advances in multimodal magnetic resonance imaging for brain structural and functional alterations in chronic mountain sickness[J]. Chin J Magn Reson Imaging, 2025, 16(7): 140-146. DOI:10.12015/issn.1674-8034.2025.07.023.


[Abstract] With the continuous advancement of high-altitude medicine research, chronic mountain sickness (CMS), as a special pathological condition caused by prolonged hypoxia exposure, has become a critical public health issue in high-altitude medicine that urgently requires resolution. Currently, the pathophysiological mechanisms underlying CMS-induced morphological changes and functional abnormalities in brain tissue remain incompletely understood, and systematic conclusions regarding its imaging characteristics are still lacking. In this context, the use of non-invasive imaging techniques for early diagnosis and intervention of CMS holds significant clinical value.In recent years, particularly magnetic resonance imaging (MRI) and its derivative techniques, has demonstrated remarkable advantages in both the mechanistic research and clinical diagnosis of CMS. This article systematically reviews the research progress on CMS-related structural and functional brain alterations based on multimodal MRI technologies, with a focus on the application value of structural MRI and functional MRI in elucidating the neuropathological mechanisms of CMS. The aim is to provide objective imaging evidence for the early diagnosis and precision treatment of CMS.
[Keywords] chronic mountain sickness;magnetic resonance imaging;high altitude;brain;cognitive function

HOU Yuyin   WEN Shengbao*   ZHOU Boqi   YANG Airu   CAI Shaoyin   ZOU Menglong  

Medical Imaging Centre, Qinghai University Affiliated Hospital, Xining 810000, China

Corresponding author: WEN S B, E-mail: qdfyyxzxwsb@126.com

Conflicts of interest   None.

Received  2025-04-01
Accepted  2025-07-07
DOI: 10.12015/issn.1674-8034.2025.07.023
Cite this article as: HOU Y Y, WEN S B, ZHOU B Q, et al. Research advances in multimodal magnetic resonance imaging for brain structural and functional alterations in chronic mountain sickness[J]. Chin J Magn Reson Imaging, 2025, 16(7): 140-146. DOI:10.12015/issn.1674-8034.2025.07.023.

[1]
GATTERER H, VILLAFUERTE F C, ULRICH S, et al. Altitude illnesses[J/OL]. Nat Rev Dis Primers, 2024, 10(1): 43 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/38902312/. DOI: 10.1038/s41572-024-00526-w.
[2]
ZHENG G P, NIAN W, SHI X F, et al. Progress in multiomics research on high altitude polycythemia[J]. Zhonghua Xue Ye Xue Za Zhi, 2024, 45(8): 795-800. DOI: 10.3760/cma.j.cn121090-20240318-00100.
[3]
ZUBIETA-CALLEJA G. Redefining chronic mountain sickness: insights from high-altitude research and clinical experience[J]. Med Rev, 2025, 5(1): 44-65. DOI: 10.1515/mr-2024-0036.
[4]
RAMCHANDANI R, FLORICA I T, ZHOU Z, et al. Review of Athletic Guidelines for High-Altitude Training and Acclimatization[J]. High Alt Med Biol, 2024, 25(2): 113-121. DOI: 10.1089/ham.2023.0042.
[5]
ZILA-VELASQUE J P, GRADOS-ESPINOZA P, GOICOCHEA-ROMERO P A, et al. Mountain sickness in altitude inhabitants of Latin America: A systematic review and meta-analysis[J/OL]. PLoS One, 2024, 19(9): e0305651 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/39316567/. DOI: 10.1371/journal.pone.0305651.
[6]
MOULTON M J, BARISH S, RALHAN I, et al. Neuronal ROS-induced glial lipid droplet formation is altered by loss of Alzheimer's disease-associated genes[J/OL]. Proc Natl Acad Sci U S A, 2021, 118(52): e2112095118 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/34949639/. DOI: 10.1073/pnas.2112095118.
[7]
VILLAFUERTE F C, SIMONSON T S, BERMUDEZ D, et al. High-Altitude Erythrocytosis: Mechanisms of Adaptive and Maladaptive Responses[J/OL]. Physiology (Bethesda), 2022, 37(4): 0 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/35001654/. DOI: 10.1152/physiol.00029.2021.
[8]
GARRIDO E, BOTELLA DE MAGLIA J, CASTILLO O. Acute, subacute and chronic mountain sickness[J]. Rev Clin Esp (Barc), 2021, 221(8): 481-490. DOI: 10.1016/j.rceng.2019.12.009.
[9]
HOU Y, FAN F, XIE N, et al. Rhodiola crenulata alleviates hypobaric hypoxia-induced brain injury by maintaining BBB integrity and balancing energy metabolism dysfunction[J/OL]. Phytomedicine, 2024, 128: 155529 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/38503156/. DOI: 10.1016/j.phymed.2024.155529.
[10]
LUKS A M, HACKETT P H. Medical Conditions and High-Altitude Travel. Reply[J]. N Engl J Med, 2022, 386(19): 1866-1867. DOI: 10.1056/NEJMc2203182.
[11]
SAVIOLI G, CERESA I F, GORI G, et al. Pathophysiology and Therapy of High-Altitude Sickness: Practical Approach in Emergency and Critical Care[J/OL]. J Clin Med, 2022, 11(14): 3937 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/35887706/. DOI: 10.3390/jcm11143937.
[12]
LONG C, BAO H. Study of high-altitude cerebral edema using multimodal imaging[J/OL]. Front Neurol, 2022, 13: 1041280 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/36776573/. DOI: 10.3389/fneur.2022.1041280.
[13]
WANG H L, ZHANG C L, QIU Y M, et al. Dysfunction of the Blood-brain Barrier in Cerebral Microbleeds: from Bedside to Bench[J]. Aging Dis, 2021, 12(8): 1898-1919. DOI: 10.14336/AD.2021.0514.
[14]
MARTÍN-NOGUEROL T, SANTOS-ARMENTIA E, RAMOS A, et al. An update on susceptibility-weighted imaging in brain gliomas[J]. Eur Radiol, 2024, 34(10): 6763-6775. DOI: 10.1007/s00330-024-10703-w.
[15]
KRÜGER J, OPFER R, SPIES L, et al. Voxel-based morphometry in single subjects without a scanner-specific normal database using a convolutional neural network[J]. Eur Radiol, 2024, 34(6): 3578-3587. DOI: 10.1007/s00330-023-10356-1.
[16]
TANG Y, LIU R. Surface-Based Morphometry Findings Reveal Structural Alterations of the Brain in Meige Syndrome[J]. Can J Neurol Sci, 2024: 1-9. DOI: 10.1017/cjn.2024.326.
[17]
CHEN J, TIAN C, ZHANG Q, et al. Changes in Volume of Subregions Within Basal Ganglia in Obsessive-Compulsive Disorder: A Study With Atlas-Based and VBM Methods[J/OL]. Front Neurosci, 2022, 16: 890616 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/35794954/. DOI: 10.3389/fnins.2022.890616.
[18]
VACCA S, SURI J S, SABA L. SBM vs VBM for highlighting similarities and differences between chronotype and Parkinson's MRI scans: a preliminary analysis[J]. Int J Neurosci, 2025, 135(2): 203-212. DOI: 10.1080/00207454.2023.2292958.
[19]
CHEN M, ZHANG G, WANG W J, et al. Application of synthetic MRI combined with VBM brain partition in the diagnosis of early Parkinson's disease[J]. Chin J Magn Reson Imag, 2023, 14(10): 20-25. DOI: 10.12015/issn.1674-8034.2023.10.004.
[20]
LIU C B, CHENG J B, HE J B, et al. Unusual magnetization process and magnetocaloric effect in α-CoV(2)O(6)driven by pulsed magnetic fields[J/OL]. J Phys Condens Matter, 2021, 33(43) [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/34343981/. DOI: 10.1088/1361-648X/ac1a31.
[21]
BAO H, HE X, WANG F, et al. Study of Brain Structure and Function in Chronic Mountain Sickness Based on fMRI[J/OL]. Front Neurol, 2021, 12: 763835 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/35069409/. DOI: 10.3389/fneur.2021.763835.
[22]
LIU C X, BAO H H, LI W X, et al. Voxel-based morphometry MRI study of gray matter's alteration in patients with chronic mountain sickness[J]. Chin J Magn Reson Imag, 2014, 5(3): 211-215. DOI: 10.3969/j.issn.1674-8034.2014.03.012.
[23]
CHAKER S C, REDDY A P, KING D, et al. Diffusion Tensor Imaging: Techniques and Applications for Peripheral Nerve Injury[J]. Ann Plast Surg, 2024, 93(3SSuppl 2): S113-S115. DOI: 10.1097/SAP.0000000000004055.
[24]
GHADERI S, MOHAMMADI S, FATEHI F. Diffusion Tensor Imaging (DTI) Biomarker Alterations in Brain Metastases and Comparable Tumors: A Systematic Review of DTI and Tractography Findings[J]. World Neurosurg, 2024, 190: 113-129. DOI: 10.1016/j.wneu.2024.07.037.
[25]
YUAN J, SIAKALLIS L, LI H B, et al. Structural- and DTI- MRI enable automated prediction of IDH Mutation Status in CNS WHO Grade 2-4 glioma patients: a deep Radiomics Approach[J/OL]. BMC Med Imaging, 2024, 24(1): 104 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/38702613/. DOI: 10.1186/s12880-024-01274-9.
[26]
BAO H, LI R, HE M, et al. DTI Study on Brain Structure and Cognitive Function in Patients with Chronic Mountain Sickness[J/OL]. Sci Rep, 2019, 9(1): 19334 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/31852992/. DOI: 10.1038/s41598-019-55498-9.
[27]
HUANG R, WANG A, ZHANG Y, et al. Alterations of the cerebral microstructure in patients with noise-induced hearing loss: A diffusion tensor imaging study[J/OL]. Brain Behav, 2024, 14(4): e3479 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/38648388/. DOI: 10.1002/brb3.3479.
[28]
GAO B, QU M, JIANG Y, et al. Fractional Anisotropy is a More Sensitive Diagnostic Biomarker Than Mean Kurtosis for Patients with Parkinson Disease with Cognitive Dysfunction: A Diffusional Kurtosis Map Tract-Based Spatial Statistics Study[J]. AJNR Am J Neuroradiol, 2024, 45(8): 1098-1105. DOI: 10.3174/ajnr.A8297.
[29]
YANG D, TIAN C, LIU J, et al. Diffusion Tensor and Kurtosis MRI-Based Radiomics Analysis of Kidney Injury in Type 2 Diabetes[J]. J Magn Reson Imaging, 2024, 60(5): 2078-2087. DOI: 10.1002/jmri.29263.
[30]
ZHONG Y, GUAN J, MA Y, et al. Role of Imaging Modalities and N-Acetylcysteine Treatment in Sepsis-Associated Encephalopathy[J]. ACS Chem Neurosci, 2023, 14(11): 2172-2182. DOI: 10.1021/acschemneuro.3c00180.
[31]
SUN Y Q, GUO J J, ZHANG Y H, et al. Diffusion kurtosis imaging for demonstrating the microstructure of brain gray and white matter in patients withchronic mountain sickness[J]. The Journal of Practical Medicine, 2017, 33(1): 127-130. DOI: 10.3969/j.issn.1006-5725.2017.01.035.
[32]
SUN Y Q, DENG W Y, WANG Y J, et al. The value of diffusion kurtosis imaging combined with diffusion weighted imaging in evaluating the microstructure of cerebral gray and white matter in chronic mountain sickness[J]. Journal of Practical Radiology, 2018, 34(12):1827-1830,1838. DOI: 10.3969/j.issn.1002-1671.2018.12.001.
[33]
BOERWINKLE V L, NOWLEN M A, VAZQUEZ J E, et al. Resting-state fMRI seizure onset localization meta-analysis: comparing rs-fMRI to other modalities including surgical outcomes[J/OL]. Front Neuroimaging, 2024, 3: 1481858 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/39742390/. DOI: 10.3389/fnimg.2024.1481858.
[34]
GAO Y J, SUN J, GUO X, et al. Research progress of resting-state functional magnetic resonance imaging in the auxiliary diagnosis and early prognosis of bipolar disorder[J]. Chin J Magn Reson Imag, 2023, 14(12): 111-115. DOI: 10.12015/issn.1674-8034.2023.12.019.
[35]
ZHU Q Q, TIAN S, ZHANG L, et al. Altered dynamic amplitude of low-frequency fluctuation in individuals at high risk for Alzheimer's disease[J]. Eur J Neurosci, 2024, 59(9): 2391-2402. DOI: 10.1111/ejn.16267.
[36]
WANG X, SHEN Y, WEI W, et al. Alterations of regional homogeneity and functional connectivity in different hoehn and yahr stages of Parkinson's disease[J/OL]. Brain Res Bull, 2024, 218: 111110 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/39486465/. DOI: 10.1016/j.brainresbull.2024.111110.
[37]
ZU M, FU L, HU M, et al. Amplitude of Low-Frequency Fluctuation With Different Clinical Outcomes in Patients With Generalized Tonic-Clonic Seizures[J/OL]. Front Psychiatry, 2022, 13: 847366 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/35432042/. DOI: 10.3389/fpsyt.2022.847366.
[38]
DAI W, LI Z, LIN H, et al. Resting-State Functional MRI Regional Homogeneity Correlates With Motor Scores in Parkinson's Disease[J/OL]. J Neuroimaging, 2025, 35(1): e70020 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/39901489/. DOI: 10.1111/jon.70020.
[39]
ZHANG Q, LIANG L, LAI Z, et al. Altered regional homogeneity following moxibustion in mild cognitive impairment[J]. Brain Imaging Behav, 2024, 18(2): 343-351. DOI: 10.1007/s11682-023-00830-1.
[40]
THOMSON A R, PASANTA D, ARICHI T, et al. Neurometabolite differences in Autism as assessed with Magnetic Resonance Spectroscopy: A systematic review and meta-analysis[J/OL]. Neurosci Biobehav Rev, 2024, 162: 105728 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/38796123/. DOI: 10.1016/j.neubiorev.2024.105728.
[41]
SUBAŞı TURGUT F, BULUT M, HATTAPOĞLU S, et al. The relationship between oxidative stress markers and 1H-Magnetic resonance spectroscopy findings in obsessive compulsive disorder[J/OL]. Brain Res, 2024, 1833: 148852 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/38494099/. DOI: 10.1016/j.brainres.2024.148852.
[42]
BAI X X, BAO H H, HE X. Study on multi-voxel 1H-MRS in brain of chronic mountain sickness[J]. Chin J Magn Reson Imag, 2022, 13(02): 42-46. DOI: 10.12015/issn.1674-8034.2022.02.009.
[43]
CHEN W, WU S. Editorial for "Differentiation Between High-Grade Glioma and Brain Metastasis Using Cerebral Perfusion-Related Parameters (Cerebral Blood Volume and Cerebral Blood Flow): A Systematic Review and Meta-Analysis of Perfusion-weighted MRI Techniques"[J]. J Magn Reson Imaging, 2025, 61(2): 769-770. DOI: 10.1002/jmri.29519.
[44]
ŚLEDZIŃSKA-BEBYN P, FURTAK J, BEBYN M, et al. Investigating glioma genetics through perfusion MRI: rCBV and rCBF as predictive biomarkers[J/OL]. Magn Reson Imaging, 2025, 117: 110318 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/39740747/. DOI: 10.1016/j.mri.2024.110318.
[45]
ABOUSRAFA S E, MAIR G. MRI for collateral assessment pre-thrombectomy and association with outcome: a systematic review and meta-analysis[J]. Neuroradiology, 2023, 65(6): 1001-1014. DOI: 10.1007/s00234-023-03127-8.
[46]
LIU J G, LU Z Q, DING L, et al. Value of magnetic resonance diffusion-weighted imaging and perfusion-weighted imaging in the assessment of collateral circulation in emergency stroke[J]. Journal of Clinical and Experimental Medicine, 2025, 24(4): 421-425. DOI: 10.3969/j.issn.1671-4695.2025.04.021.
[47]
HWANG Z A, LI C W, HSU A L, et al. Assessment of resting cerebral perfusion between methamphetamine-associated psychosis and schizophrenia through arterial spin labeling MRI[J]. Eur Arch Psychiatry Clin Neurosci, 2025, 275(3): 873-883. DOI: 10.1007/s00406-024-01857-1.
[48]
LI H J, WANG R P. Advances in three-dimensional arterial spin labeling imaging of cerebral small vessel disease[J]. Chinese Imaging Journal of Integrated Traditional and Western Medicine, 2025, 23(1): 117-120. DOI: 10.3969/j.issn.1672-0512.2025.01.024.
[49]
BAO Y Y, BAO H H. Evaluation of MR perfusion weighted imaging of the brain chronic mountain sickness[J]. Journal of Practical Radiology, 2019, 35(7): 1042-1045,1049. DOI: 10.3969/j.issn.1002-1671.2019.07.004.
[50]
SU H, CHAN K. Design Chemical Exchange Saturation Transfer Contrast Agents and Nanocarriers for Imaging Proton Exchange in Vivo[J]. ACS Nano, 2024, 18(50): 33775-33791. DOI: 10.1021/acsnano.4c05923.
[51]
JIANG X, HU Z, WANG S, et al. Deep Learning for Medical Image-Based Cancer Diagnosis[J/OL]. Cancers (Basel), 2023, 15(14): 3608 [2025-03-10]. https://pubmed.ncbi.nlm.nih.gov/37509272/. DOI: 10.3390/cancers15143608.
[52]
ZHANG J, CUI Y, WEI K, et al. Deep learning predicts resistance to neoadjuvant chemotherapy for locally advanced gastric cancer: a multicenter study[J]. Gastric Cancer, 2022, 25(6): 1050-1059. DOI: 10.1007/s10120-022-01328-3.

PREV Advances in multimodal MRI studies of brain alterations induced by acute mountain sickness
NEXT Application of multimodal imaging techniques in white matter hyperintensity and coronary atherosclerosis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn