Share:
Share this content in WeChat
X
Review
Application of multimodal imaging techniques in white matter hyperintensity and coronary atherosclerosis
ZHAO Jixiu  MENG Li 

Cite this article as: ZHAO J X, MENG L. Application of multimodal imaging techniques in white matter hyperintensity and coronary atherosclerosis[J]. Chin J Magn Reson Imaging, 2025, 16(7): 147-153, 159. DOI:10.12015/issn.1674-8034.2025.07.024.


[Abstract] White matter hyperintensities (WMH), a characteristic imaging manifestation of cerebral small vessel disease, are associated with cognitive impairment and dementia risk. Coronary atherosclerosis (CAS), as a crucial pathological feature of cardiovascular diseases, exerts systemic impacts on the overall health of the cardio-cerebrovascular system. In recent years, advanced imaging technologies such as high-resolution magnetic resonance imaging (MRI) and coronary computed tomography angiography (CCTA) have provided novel perspectives for in-depth exploration of the pathological mechanisms and interrelationships between CAS and WMH. This article focuses on elucidating the applications of multimodal imaging techniques in both conditions and synthesizing evidence regarding the correlations in imaging characteristics between CAS and WMH, aiming to provide imaging-based references for early clinical identification of high-risk populations and formulation of intervention strategies.
[Keywords] white matter hyperintensity;coronary atherosclerotic plaque;magnetic resonance imaging;coronary CT angiography

ZHAO Jixiu   MENG Li*  

Clinical Medicine, School of Qinghai University, Xining 810000, China

Corresponding author: MENG L, E-mail: qh_mengli@126.com;

Conflicts of interest   None.

Received  2025-04-29
Accepted  2025-07-06
DOI: 10.12015/issn.1674-8034.2025.07.024
Cite this article as: ZHAO J X, MENG L. Application of multimodal imaging techniques in white matter hyperintensity and coronary atherosclerosis[J]. Chin J Magn Reson Imaging, 2025, 16(7): 147-153, 159. DOI:10.12015/issn.1674-8034.2025.07.024.

[1]
DE KORT F A S, VINKE E J, VAN DER LELIJ E J, et al. Cerebral white matter hyperintensity volumes: Normative age- and sex-specific values from 15 population-based cohorts comprising 14, 876 individuals[J/OL]. Neurobiol Aging, 2025, 146: 38-47 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/39602940/. DOI: 10.1016/j.neurobiolaging.2024.11.006.
[2]
OTTAVI T P, PEPPER E, BATEMAN G, et al. Consensus statement for the management of incidentally found brain white matter hyperintensities in general medical practice[J]. Med J Aust, 2023, 219(6): 278-284. DOI: 10.5694/mja2.52079.
[3]
CARVALHO DE ABREU D C, PIERUCCINI-FARIA F, SON S, et al. Is white matter hyperintensity burden associated with cognitive and motor impairment in patients with Parkinson's disease? A systematic review and meta-analysis[J/OL]. Neurosci Biobehav Rev, 2024, 161: 105677 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/38636832/. DOI: 10.1016/j.neubiorev.2024.105677.
[4]
FILLER J, GEORGAKIS M K, DICHGANS M. Risk factors for cognitive impairment and dementia after stroke: a systematic review and meta-analysis[J/OL]. Lancet Healthy Longev, 2024, 5(1): e31-e44 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/38101426/. DOI: 10.1016/S2666-7568(23)00217-9.
[5]
YI F Y, WANG J R, LIN M Q, et al. Correspondence between white matter hyperintensities and regional grey matter volumes in Alzheimer's disease[J/OL]. Front Aging Neurosci, 2024, 16: 1429098 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/39351014/. DOI: 10.3389/fnagi.2024.1429098.
[6]
ZHAO X Y, ZUO M Y, ZHAN F F, et al. Cognition mediates the relationship between white matter hyperintensity and motor function in patients with cerebral small vessel disease: a cross-sectional study[J]. Quant Imaging Med Surg, 2024, 14(10): 7306-7317. DOI: 10.21037/qims-24-1058.
[7]
CLANCY U, GILMARTIN D, JOCHEMS A C C, et al. Neuropsychiatric symptoms associated with cerebral small vessel disease: a systematic review and meta-analysis[J]. Lancet Psychiatry, 2021, 8(3): 225-236. DOI: 10.1016/S2215-0366(20)30431-4.
[8]
ZAMAN S, WASFY J H, KAPIL V, et al. The Lancet Commission on rethinking coronary artery disease: moving from ischaemia to atheroma[J]. Lancet, 2025, 405(10486): 1264-1312. DOI: 10.1016/S0140-6736(25)00055-8.
[9]
MĂNESCU I B, PÁL K, LUPU S, et al. Conventional biomarkers for predicting clinical outcomes in patients with heart disease[J/OL]. Life (Basel), 2022, 12(12): 2112 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/36556477/. DOI: 10.3390/life12122112.
[10]
ZHU S N, HU S Y. Research progress in inflammation-related mechanism and anti-inflammation therapy for coronary artery disease[J]. Chin J Mult Organ Dis Elder, 2024, 23(3): 225-228. DOI: 10.11915/j.issn.1671-5403.2024.03.048.
[11]
ZHOU X R, YU Z Y, LUO X. Research progress of high signal in white matter[J]. Neural Inj Funct Reconstr, 2020, 15(8): 464-465, 468. DOI: 10.16780/j.cnki.sjssgncj.20200186.
[12]
KNEIHSL M, GATTRINGER T, HOFER E, et al. Cerebral white matter hyperintensities indicate severity and progression of coronary artery calcification[J/OL]. Sci Rep, 2024, 14(1): 4664 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/38409473/. DOI: 10.1038/s41598-024-55305-0.
[13]
CHOI J, KIM J Y, KWON H J, et al. Association of cerebral white matter hyperintensities with coronary artery calcium in a healthy population: a cross-sectional study[J/OL]. Sci Rep, 2022, 12(1): 21562 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/36513747/. DOI: 10.1038/s41598-022-25654-9.
[14]
CHEN W Q, XU J J, LU Y, et al. Neuroimaging diagnostic criteria and standardized definition of terms for small vessel disease in China: expert consensus from the Chinese stroke association[J]. Chin J Stroke, 2024, 19(4): 376-404. DOI: 10.3969/j.issn.1673-5765.2024.04.002.
[15]
YE J Y, WANG Z, GONG Y T, et al. Neuroimaging standards for research into cerebral small vessel disease(STRIVE-2): advances since 2013[J]. Chin J Stroke, 2023, 18(10): 1160-1174. DOI: 10.3969/j.issn.1673-5765.2023.10.009.
[16]
CHEN X D, WANG J H, SHAN Y L, et al. Cerebral small vessel disease: neuroimaging markers and clinical implication[J]. J Neurol, 2019, 266(10): 2347-2362. DOI: 10.1007/s00415-018-9077-3.
[17]
SHINDO A, ISHIKAWA H, II Y, et al. Clinical features and experimental models of cerebral small vessel disease[J/OL]. Front Aging Neurosci, 2020, 12: 109 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/32431603/. DOI: 10.3389/fnagi.2020.00109.
[18]
VELICAN C, VELICAN D. Some particular aspects of the microarchitecture of human coronary arteries[J]. Atherosclerosis, 1979, 33(2): 191-200. DOI: 10.1016/0021-9150(79)90116-3.
[19]
XU X L, HUA Y, WANG L L, et al. Correlation between risk factors of cerebrovascular disease and calcified plaque characteristics in patients with atherosclerotic severe carotid stenosis[J]. Neurol Res, 2020, 42(1): 83-89. DOI: 10.1080/01616412.2019.1710403.
[20]
YANG F, YANG M Y, LE J Q, et al. Protective effects and therapeutics of ginsenosides for improving endothelial dysfunction: from therapeutic potentials, pharmaceutical developments to clinical trials[J]. Am J Chin Med, 2022, 50(3): 749-772. DOI: 10.1142/S0192415X22500318.
[21]
KAMARUDDIN N A, HAKIM ABDULLAH M N, TAN J J, et al. Vascular protective effect and its possible mechanism of action on selected active phytocompounds: a review[J/OL]. Evid Based Complement Alternat Med, 2022, 2022: 3311228 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/35469164/. DOI: 10.1155/2022/3311228.
[22]
SHIMAI R, HANAFUSA K, NAKAYAMA H, et al. Lysophosphatidylglucoside/GPR55 signaling promotes foam cell formation in human M2c macrophages[J/OL]. Sci Rep, 2023, 13: 12740 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/37544935/. DOI: 10.1038/s41598-023-39904-x.
[23]
SOLÉ-GUARDIA G, CUSTERS E, DE LANGE A, et al. Association between hypertension and neurovascular inflammation in both normal-appearing white matter and white matter hyperintensities[J/OL]. Acta Neuropathol Commun, 2023, 11(1): 2 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/36600303/. DOI: 10.1186/s40478-022-01497-3.
[24]
CLARO V, FERRO A. Netrin-1: Focus on its role in cardiovascular physiology and atherosclerosis[J/OL]. JRSM Cardiovasc Dis, 2020, 9: 2048004020959574 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/33282228/. DOI: 10.1177/2048004020959574.
[25]
PARK S, LEE I K. Progression of multifaceted immune cells in atherosclerotic development[J]. J Lipid Atheroscler, 2019, 8(1): 15-25. DOI: 10.12997/jla.2019.8.1.15.
[26]
CHEN Y-C, CHANG S C, LEE Y S, et al. TOMM40 genetic variants cause neuroinflammation in Alzheimer's disease[J/OL]. Int J Mol Sci, 2023, 24(4): 4085 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/36835494/. DOI: 10.3390/ijms24044085.
[27]
ZHU Y Q, HADDAD Y, YUN H J, et al. Induced inflammatory and oxidative markers in cerebral microvasculature by mentally depressive stress[J/OL]. Mediators Inflamm, 2023, 2023: 4206316 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/36852396/. DOI: 10.1155/2023/4206316.
[28]
ZHOU F, LI K, YANG K P. Adipose-derived stem cell exosomes and related microRNAs in atherosclerotic cardiovascular disease[J]. J Cardiovasc Transl Res, 2023, 16(2): 453-462. DOI: 10.1007/s12265-022-10329-7.
[29]
SUN Z, LI C Y, WISNIEWSKI T W, et al. In vivo detection of age-related tortuous cerebral small vessels using ferumoxytol-enhanced 7T MRI[J]. Aging Dis, 2024, 15(4): 1913-1926. DOI: 10.14336/AD.2023.1110-1.
[30]
SHOURAV M M I, GODASI R R, ANISETTI B, et al. Association between heart failure and cerebral collateral flow in large vessel occlusive ischemic stroke[J/OL]. J Stroke Cerebrovasc Dis, 2024, 33(11): 107999 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/39243832/. DOI: 10.1016/j.jstrokecerebrovasdis.2024.107999.
[31]
THONG E H E, QUEK E J W, LOO J H, et al. Acute myocardial infarction and risk of cognitive impairment and dementia: a review[J/OL]. Biology (Basel), 2023, 12(8): 1154 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/37627038/. DOI: 10.3390/biology12081154.
[32]
VIPIN A, KUMAR D, SOO S A, et al. APOE4 carrier status determines association between white matter disease and grey matter atrophy in early-stage dementia[J/OL]. Alzheimers Res Ther, 2023, 15(1): 103 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/37270543/. DOI: 10.1186/s13195-023-01251-4.
[33]
GAO Y Q, SU B B, LUO Y N, et al. HLA-C*07: 01 and HLA-DQB1*02: 01 protect against white matter hyperintensities and deterioration of cognitive function: a population-based cohort study[J/OL]. Brain Behav Immun, 2024, 115: 250-257 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/37884160/. DOI: 10.1016/j.bbi.2023.10.019.
[34]
MAO J Y, YANG R H, YUAN P, et al. Different stimuli induce endothelial dysfunction and promote atherosclerosis through the Piezo1/YAP signaling axis[J/OL]. Arch Biochem Biophys, 2023, 747: 109755 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/37714252/. DOI: 10.1016/j.abb.2023.109755.
[35]
HIGASHI Y. Roles of oxidative stress and inflammation in vascular endothelial dysfunction-related disease[J/OL]. Antioxidants (Basel), 2022, 11(10): 1958 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/36290681/. DOI: 10.3390/antiox11101958.
[36]
LI W, CHEN D, WONG S Y, et al. Associations of smoking status with carotid atherosclerosis: Mediated role of blood indexes and blood pressure[J/OL]. Nutr Metab Cardiovasc Dis, 2025, 35(2): 103709 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/39271389/. DOI: 10.1016/j.numecd.2024.08.003.
[37]
REN Y H, MENG K Y, SUN Y T, et al. Effects of white matter lesion grading on the cognitive function of patients with chronic alcohol dependence[J]. Am J Transl Res, 2023, 15(2): 1129-1139.
[38]
WANG W W, ZHOU H R, QI S X, et al. The association between physical activities combined with dietary habits and cardiovascular risk factors[J/OL]. Heliyon, 2024, 10(7): e28845 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/38596005/. DOI: 10.1016/j.heliyon.2024.e28845.
[39]
LIU Z Z, YU H Y, LI Y H, et al. Comparison of Syn T2-FLAIR and Syn DIR with conventional T2-FLAIR in displaying white matter hyperintensities in migraine patients[J]. Neuroradiology, 2025, 67(1): 49-56. DOI: 10.1007/s00234-024-03477-x.
[40]
SINANI O, DADOULI K, NTELLAS P, et al. Association between white matter lesions and Parkinson's disease: an impact on Postural/Gait difficulty phenotype and cognitive performance[J]. Neurol Res, 2022, 44(12): 1122-1131. DOI: 10.1080/01616412.2022.2112378.
[41]
WANG C, XU J, FU Q, et al. Relationship between brain white matter high signal Fazekas grading and cognitive dysfunction and neurological dysfunction of patients[J]. Clin Educ Gen Pract, 2025, 23(4): 331-333, 354. DOI: 10.13558/j.cnki.issn1672-3686.2025.004.011.
[42]
BI R T, WEI Y H, LI P C, et al. Associations of cerebral small vessel disease and chronic kidney disease in patients with acute ischemic stroke[J/OL]. J Am Heart Assoc, 2025, 14(9): e038711 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/40265579/. DOI: 10.1161/JAHA.124.038711.
[43]
RUDOLPH M D, COHEN J R, MADDEN D J. Distributed associations among white matter hyperintensities and structural brain networks with fluid cognition in healthy aging[J]. Cogn Affect Behav Neurosci, 2024, 24(6): 1121-1140. DOI: 10.3758/s13415-024-01219-3.
[44]
ZENG S Y, MA L, MAO H X, et al. Dynamic functional network connectivity in patients with a mismatch between white matter hyperintensity and cognitive function[J/OL]. Front Aging Neurosci, 2024, 16: 1418173 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/39086757/. DOI: 10.3389/fnagi.2024.1418173.
[45]
CHEN J, LU W W, WANG Z Y, et al. Large-scale functional network connectivity mediate the associations of white matter lesions with executive functions and information processing speed in asymptomatic cerebral small vessels diseases[J/OL]. NeuroImage Clin, 2025, 46: 103773 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/40121823/. DOI: 10.1016/j.nicl.2025.103773.
[46]
HAN H L, NING Z H, YANG D D, et al. Associations between cerebral blood flow and progression of white matter hyperintensity in community-dwelling adults: a longitudinal cohort study[J]. Quant Imaging Med Surg, 2022, 12(8): 4151-4165. DOI: 10.21037/qims-22-141.
[47]
LI Y, LUO S L, LI A J, et al. Study on ASL perfusion difference based on high signal Fazekas score of white matter[J]. Anhui Med J, 2024, 45(7): 859-863. DOI: 10.3969/j.issn.1000-0399.2024.07.010.
[48]
CHANG W X, WANG T, LIU W, et al. Correlation analysis between executive function and cerebral blood flow in patients with cerebral white matter high signals[J]. China Mod Med, 2024, 31(14): 4-7, 36. DOI: 1674-4721(2024)5(b)-0004-05.
[49]
CAO Y Y. Correlation between diffusion tensor imaging and cognitive control capacity in patients with white matter hyperintensities[D]. Hangzhou: Zhejiang Chinese Medical University, 2024. DOI: 10.27465/d.cnki.gzzyc.2024.000358.
[50]
KERN K C, ZAGZOUG M S, GOTTESMAN R F, et al. Diffusion tensor free water MRI predicts progression of FLAIR white matter hyperintensities after ischemic stroke[J/OL]. Front Neurol, 2023, 14: 1172031 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/37808483/. DOI: 10.3389/fneur.2023.1172031.
[51]
VOORTER P H M, STRINGER M S, VAN DINTHER M, et al. Heterogeneity and penumbra of white matter hyperintensities in small vessel diseases determined by quantitative MRI[J]. Stroke, 2025, 56(1): 128-137. DOI: 10.1161/STROKEAHA.124.047910.
[52]
MA J, HUA X Y, ZHENG M X, et al. Brain metabolic network redistribution in patients with white matter hyperintensities on MRI analyzed with an individualized index derived from 18F-FDG-PET/MRI[J]. Korean J Radiol, 2022, 23(10): 986-997. DOI: 10.3348/kjr.2022.0320.
[53]
TONDO G, BOCCALINI C, CAMINITI S P, et al. Brain metabolism and microglia activation in mild cognitive impairment: a combined [18F] FDG and [11C]-(R)-PK11195 PET study[J]. J Alzheimers Dis, 2021, 80(1): 433-445. DOI: 10.3233/JAD-201351.
[54]
FABRIS E, KEDHI E, VERDOIA M, et al. Current role of intracoronary imaging for implementing risk stratification and tailoring culprit lesion treatment: a narrative review[J/OL]. J Clin Med, 2023, 12(10): 3393 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/37240499/. DOI: 10.3390/jcm12103393.
[55]
MAIER A, TEUNISSEN A J P, NAUTA S A, et al. Uncovering atherosclerotic cardiovascular disease by PET imaging[J]. Nat Rev Cardiol, 2024, 21(9): 632-651. DOI: 10.1038/s41569-024-01009-x.
[56]
CHATTERJEE S, EASLY-MERSKI R, MUKHERJEE D. Unveiling the prognostic power of coronary physiological progression[J]. Angiology, 2025, 76(2): 105-107. DOI: 10.1177/00033197231224049.
[57]
NAKANISHI R, OKUBO R, SOBUE Y, et al. Rationale and design of the INVICTUS registry: (multicenter registry of invasive and non-invasive imaging modalities to compare coronary computed tomography angiography, intravascular ultrasound and optical coherence tomography for the determination of severity, volume and type of coronary atherosclerosiS)[J]. J Cardiovasc Comput Tomogr, 2023, 17(6): 401-406. DOI: 10.1016/j.jcct.2023.08.011.
[58]
VINK C E M, BORODZICZ-JAZDZYK S, DE JONG E A M, et al. Quantitative perfusion by cardiac magnetic resonance imaging reveals compromised myocardial perfusion in patients with angina with non-obstructive coronary artery disease[J/OL]. Clin Res Cardiol, 2025 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/39966158/. DOI: 10.1007/s00392-025-02606-7.
[59]
WANG S, KIM P, WANG H N, et al. Myocardial blood flow quantification using stress cardiac magnetic resonance improves detection of coronary artery disease[J]. JACC Cardiovasc Imaging, 2024, 17(12): 1428-1441. DOI: 10.1016/j.jcmg.2024.07.023.
[60]
JIN H, QIN X, ZHAO F F, et al. Is coronary artery calcium an independent risk factor for white matter hyperintensity?[J/OL]. BMC Neurol, 2023, 23(1): 313 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/37648961/. DOI: 10.1186/s12883-023-03364-7.
[61]
JIN H, HOU J, QIN X, et al. Predicting progression of white matter hyperintensity using coronary artery calcium score based on coronary CT angiography-feasibility and accuracy[J/OL]. Front Aging Neurosci, 2023, 15: 1256228 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/38020772/. DOI: 10.3389/fnagi.2023.1256228.
[62]
JIN H. Correlation analysis and progress prediction of coronary artery calcification score and white matter hyperintensity signal[D]. Bengbu: Bengbu Medical College, 2024. DOI: 10.26925/d.cnki.gbbyc.2024.000079.
[63]
QIN J, CHEN R, WANG Y F, et al. Analysis of the correlation between fat attenuation index and plaque quantification parameters with brain white matter hyperintensity[J]. J Nanjing Med Univ Nat Sci, 2024, 44(9): 1262-1267. DOI: 10.7655/NYDXBNSN240232.
[64]
GUARICCI A I, NEGLIA D, ACAMPA W, et al. Computed tomography and nuclear medicine for the assessment of coronary inflammation: clinical applications and perspectives[J/OL]. J Cardiovasc Med (Hagerstown), 2023, 24(Suppl 1): e67-e76 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/37052223/. DOI: 10.2459/JCM.0000000000001433.
[65]
KURONUMA K, VAN DIEMEN P A, HAN D, et al. Relationship between impaired myocardial blood flow by positron emission tomography and low-attenuation plaque burden and pericoronary adipose tissue attenuation from coronary computed tomography: From the prospective PACIFIC trial[J]. J Nucl Cardiol, 2023, 30(4): 1558-1569. DOI: 10.1007/s12350-022-03194-z.
[66]
WURSTER T H, LANDMESSER U, ABDELWAHED Y S, et al. Simultaneous [18F] fluoride and gadobutrol enhanced coronary positron emission tomography/magnetic resonance imaging for in vivo plaque characterization[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(10): 1391-1398. DOI: 10.1093/ehjci/jeab276.
[67]
MAZINI B, DIETZ M, MARÉCHAL B, et al. Interrelation between cardiac and brain small-vessel disease: a pilot quantitative PET and MRI study[J/OL]. Eur J Hybrid Imaging, 2023, 7(1): 20 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/37926793/. DOI: 10.1186/s41824-023-00180-7.
[68]
ALVÉN J, PETERSEN R, HAGERMAN D, et al. PlaqueViT: a vision transformer model for fully automatic vessel and plaque segmentation in coronary computed tomography angiography[J]. Eur Radiol, 2025, 35(8): 4461-4471. DOI: 10.1007/s00330-025-11410-w.
[69]
TZIMAS G, GULSIN G S, EVERETT R J, et al. Age- and sex-specific nomographic CT quantitative plaque data from a large international cohort[J]. JACC Cardiovasc Imaging, 2024, 17(2): 165-175. DOI: 10.1016/j.jcmg.2023.05.011.
[70]
MILLER R J H, MANRAL N, LIN A, et al. Patient-specific myocardial infarction risk thresholds from AI-enabled coronary plaque analysis[J/OL]. Circ Cardiovasc Imaging, 2024, 17(10): e016958 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/39405390/. DOI: 10.1161/CIRCIMAGING.124.016958.
[71]
BUCKLER A J, GOTTO A M, RAJEEV A, et al. Atherosclerosis risk classification with computed tomography angiography: a radiologic-pathologic validation study[J/OL]. Atherosclerosis, 2023, 366: 42-48 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/36481054/. DOI: 10.1016/j.atherosclerosis.2022.11.013.
[72]
HE H Y, JIANG J, PENG S S, et al. A robust automated segmentation method for white matter hyperintensity of vascular-origin[J/OL]. Neuroimage, 2025, 315: 121279 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/40389145/. DOI: 10.1016/j.neuroimage.2025.121279.
[73]
KIM H, RYU W S, SCHELLINGERHOUT D, et al. Automated segmentation of MRI white matter hyperintensities in 8421 patients with acute ischemic stroke[J]. AJNR Am J Neuroradiol, 2024, 45(12): 1885-1894. DOI: 10.3174/ajnr.A8418.
[74]
HOU J, JIN H, ZHANG Y S, et al. Hybrid model of CT-fractional flow reserve, pericoronary fat attenuation index and radiomics for predicting the progression of WMH: a dual-center pilot study[J/OL]. Front Cardiovasc Med, 2023, 10: 1282768 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/38179506/. DOI: 10.3389/fcvm.2023.1282768.
[75]
JOHANSEN M C, GOTTESMAN R F, KRAL B G, et al. Association of coronary artery atherosclerosis with brain white matter hyperintensity[J]. Stroke, 2021, 52(8): 2594-2600. DOI: 10.1161/STROKEAHA.120.032674.

PREV Research advances in multimodal magnetic resonance imaging for brain structural and functional alterations in chronic mountain sickness
NEXT Advances in the application of magnetic resonance habitat imaging for the diagnosis and treatment of breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn