Share:
Share this content in WeChat
X
Review
Application progress of conventional and diffusion magnetic resonance imaging in non-puerperal mastitis
WU Yueqi  ZHAO Siqi  LI Yuanfei  ZHANG Moyun  ZHANG Lina 

Cite this article as: WU Y Q, ZHAO S Q, LI Y F, et al. Application progress of conventional and diffusion magnetic resonance imaging in non-puerperal mastitis[J]. Chin J Magn Reson Imaging, 2025, 16(7): 160-165. DOI:10.12015/issn.1674-8034.2025.07.026.


[Abstract] Non-puerperal mastitis (NPM) is an inflammatory disease occurring in female non-lactation period, has an unknown etiology and is prone to recurrence. Conventional antibiotics has limited efficacy, repeated rupture can lead to complications such as sinus tracts, and some cases are difficult to distinguish from malignant breast diseases. MRI can be of great help to the diagnosis of NPM and the differentiation from malignant breast diseases, and provide a reference for clinical determination of surgical procedures. At present, there are no relevant literature reviews on the application of conventional and diffusion MRI in differentiating various types of NPM and distinguishing NPM from malignant tumors. This article reviews the current status and research progress of conventional and diffusion magnetic resonance imaging in the diagnosis, classification and differentiation from breast cancer of NPM as well as the application of the artificial intelligence technologies such as combined radiomics, to improve reference for the clinical diagnosis of NPM.
[Keywords] non puerperal mastitis;breast cancer;magnetic resonance imaging;diffusion imaging;radiomics;deep learning

WU Yueqi   ZHAO Siqi   LI Yuanfei   ZHANG Moyun   ZHANG Lina*  

Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

Corresponding author: ZHANG L N, E-mail: zln201045@163.com

Conflicts of interest   None.

Received  2025-04-14
Accepted  2025-06-10
DOI: 10.12015/issn.1674-8034.2025.07.026
Cite this article as: WU Y Q, ZHAO S Q, LI Y F, et al. Application progress of conventional and diffusion magnetic resonance imaging in non-puerperal mastitis[J]. Chin J Magn Reson Imaging, 2025, 16(7): 160-165. DOI:10.12015/issn.1674-8034.2025.07.026.

[1]
ZHOU F, SHANG X C, TIAN X S, et al. Clinical practice guidelines for diagnosis and treatment of patients with non-puerperal mastitis: Chinese Society of Breast Surgery (CSBrS) practice guideline 2021[J]. Chin Med J (Engl), 2021, 134(15): 1765-1767. DOI: 10.1097/CM9.0000000000001532.
[2]
JIAO Y C, CHANG K X, JIANG Y, et al. Identification of periductal mastitis and granulomatous lobular mastitis: a literature review[J/OL]. Ann Transl Med, 2023, 11(3): 158 [2025-04-13]. https://pubmed.ncbi.nlm.nih.gov/36846004/. DOI: 10.21037/atm-22-6473.
[3]
MOHAMMED A A. Mammary duct ectasia in adult females; risk factors for the disease, a case control study[J/OL]. Ann Med Surg (Lond), 2021, 62: 140-144 [2025-04-13]. https://pubmed.ncbi.nlm.nih.gov/33520211/. DOI: 10.1016/j.amsu.2021.01.023.
[4]
TAOUREL P. MRI to detect contralateral breast cancer in patients with newly diagnosed breast cancer: an increase in overall survival to be confirmed[J]. Radiology, 2022, 304(2): 308-309. DOI: 10.1148/radiol.220546.
[5]
ZHU G M, DONG Y D, ZHU R T, et al. Dynamic contrast-enhanced magnetic resonance imaging parameters combined with diffusion-weighted imaging for discriminating malignant lesions, molecular subtypes, and pathological grades in invasive ductal carcinoma patients[J/OL]. PLoS One, 2025, 20(4): e0320240 [2025-04-13]. https://pubmed.ncbi.nlm.nih.gov/40233046/. DOI: 10.1371/journal.pone.0320240.
[6]
XU Z, ZHOU Z J, SON J B, et al. Deep learning models based on pretreatment MRI and clinicopathological data to predict responses to neoadjuvant systemic therapy in triple-negative breast cancer[J/OL]. Cancers (Basel), 2025, 17(6): 966 [2025-04-13]. https://pubmed.ncbi.nlm.nih.gov/40149299/. DOI: 10.3390/cancers17060966.
[7]
XIE T W, ZHAO Q F, FU C X, et al. Improved value of whole-lesion histogram analysis on DCE parametric maps for diagnosing small breast cancer (≤ 1 cm)[J]. Eur Radiol, 2022, 32(3): 1634-1643. DOI: 10.1007/s00330-021-08244-7.
[8]
LIANG H B, NING N, ZHAO S Q, et al. 3D-MIP reconstruction and multi parameter evaluation of BI-RADS 4 breast tumors based on DCE-MRI[J]. Chin J Magn Reson Imag, 2024, 15(5): 94-101. DOI: 10.12015/issn.1674-8034.2024.05.016.
[9]
HU Y L, LI M Z, HU Y L, et al. Evaluating dynamic contrast-enhanced MRI for differentiating HER2-zero, HER2-low, and HER2-positive breast cancers in patients undergoing neoadjuvant chemotherapy[J/OL]. Eur J Med Res, 2025, 30(1): 132 [2025-04-13]. https://pubmed.ncbi.nlm.nih.gov/40001120/. DOI: 10.1186/s40001-024-02188-6.
[10]
YI Z L, XIE M W, SHI G Z, et al. Assessment of quantitative dynamic contrast-enhanced MRI in distinguishing different histologic grades of breast phyllode tumor[J]. Eur Radiol, 2022, 32(3): 1601-1610. DOI: 10.1007/s00330-021-08232-x.
[11]
ARIAN A, SEYED-KOLBADI F Z, YAGHOOBPOOR S, et al. Diagnostic accuracy of intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced (DCE) MRI to differentiate benign from malignant breast lesions: a systematic review and meta-analysis[J/OL]. Eur J Radiol, 2023, 167: 111051 [2025-04-13]. https://pubmed.ncbi.nlm.nih.gov/37632999/. DOI: 10.1016/j.ejrad.2023.111051.
[12]
SUN Y Y, LIAO Q X, FAN Y, et al. DCE-MRI radiomics of primary breast lesions combined with ipsilateral axillary lymph nodes for predicting efficacy of NAT[J/OL]. BMC Cancer, 2025, 25(1): 589 [2025-04-13]. https://pubmed.ncbi.nlm.nih.gov/40170181/. DOI: 10.1186/s12885-025-14004-3.
[13]
CHEN X L, LUO Y, XIE Z M, et al. Prediction of neoadjuvant chemotherapy efficacy in breast cancer: integrating multimodal imaging and clinical features[J/OL]. BMC Med Imaging, 2025, 25(1): 118 [2025-04-13]. https://pubmed.ncbi.nlm.nih.gov/40229675/. DOI: 10.1186/s12880-025-01631-2.
[14]
LYU S Y, WANG B, XIE T W, et al. Multiparametric MRI for differentiating idiopathic granulomatous mastitis from invasive breast cancer: Improving radiologists' diagnostic accuracy[J/OL]. Eur J Radiol, 2025, 184: 111958 [2025-04-13]. https://pubmed.ncbi.nlm.nih.gov/39919701/. DOI: 10.1016/j.ejrad.2025.111958.
[15]
LIU D Z, LIU C Y, ZHOU X Z, et al. Logistic regression analysis in diagnosis of mass type granulomatous mastitis by combining multiple MRI parameters[J]. Radiol Pract, 2019, 34(6): 640-645. DOI: 10.13609/j.cnki.1000-0313.2019.06.009.
[16]
LEE S A, LEE Y, RYU H S, et al. Diffusion-weighted breast MRI in prediction of upstaging in women with biopsy-proven ductal carcinoma in situ[J]. Radiology, 2022, 305(2): 307-316. DOI: 10.1148/radiol.213174.
[17]
ZHANG Q, OUYANG H, YE F, et al. Feasibility of intravoxel incoherent motion diffusion-weighted imaging in distinguishing adenocarcinoma originated from uterine corpus or cervix[J]. Abdom Radiol (NY), 2021, 46(2): 732-744. DOI: 10.1007/s00261-020-02586-4.
[18]
KANG H S, KIM J Y, KIM J J, et al. Diffusion kurtosis MR imaging of invasive breast cancer: correlations with prognostic factors and molecular subtypes[J]. J Magn Reson Imaging, 2022, 56(1): 110-120. DOI: 10.1002/jmri.27999.
[19]
GUO N, LI J, ZHANG R Z, et al. Diagnostic value of MRI in non-lactation mastitis lesions[J]. Chin J Magn Reson Imag, 2019, 10(1): 31-36. DOI: 10.12015/issn.1674-8034.2019.01.006.
[20]
MACEDO M, GANAU S, ÚBEDA B, et al. Magnetic resonance imaging findings for inflammatory mastitis of unknown etiology[J]. Radiologia (Engl Ed), 2024, 66(5): 410-418. DOI: 10.1016/j.rxeng.2023.02.006.
[21]
GONG W Y, HONG C Y, ZHONG Y T, et al. Research advances in the clinical features and diagnosis and treatment of non-puerperal mastitis[J]. Med J Chin People's Liberation Army, 2023, 48(12): 1478-1485. DOI: 10.11855/j.issn.0577-7402.0192.2022.0927.
[22]
TAO J, LIU Y, YANG J R, et al. MRI imaging feature analysis of granulomatous mastitis[J]. J Clin Radiol, 2021, 40(10): 1878-1883. DOI: 10.13437/j.cnki.jcr.2021.10.009.
[23]
YANG Y, HUANG Y F, LI P, et al. Differential diagnosis for breast ductal carcinoma in situ and plasma cell mastitis by magnetic resonance imaging[J]. J Cent South Univ Med Sci, 2018, 43(10): 1123-1130. DOI: 10.11817/j.issn.1672-7347.2018.10.013.
[24]
LIU P, YU X J, LI C Z, et al. Differential diagnosis of dynamic contrast-enhanced-MRI-based radiomics model for granulomatous mastitis and breast cancer[J]. Chin J Med Imag, 2024, 32(2): 144-149. DOI: 10.3969/j.issn.1005-5185.2024.02.007.
[25]
SOYLU BOY F N, ESEN ICTEN G, KAYADIBI Y, et al. Idiopathic granulomatous mastitis or breast cancer? a comparative MRI study in patients presenting with non-mass enhancement[J/OL]. Diagnostics (Basel), 2023, 13(8): 1475 [2025-04-13]. https://pubmed.ncbi.nlm.nih.gov/37189576/. DOI: 10.3390/diagnostics13081475.
[26]
QU N, LUO Y H, YU T. Differentiation between clinically noninflammatory granulomatous lobular mastitis and noncalcified ductal carcinoma in situ using dynamic contrast-enhanced magnetic resonance imaging[J]. Breast Care (Basel), 2020, 15(6): 619-627. DOI: 10.1159/000506068.
[27]
RAHMAT K, MUMIN N A, HAMID M T R, et al. MRI breast: current imaging trends, clinical applications, and future research directions[J]. Curr Med Imaging, 2022, 18(13): 1347-1361. DOI: 10.2174/1573405618666220415130131.
[28]
MCDONALD E S, ROMANOFF J, RAHBAR H, et al. Mean apparent diffusion coefficient is a sufficient conventional diffusion-weighted MRI metric to improve breast MRI diagnostic performance: results from the ECOG-ACRIN cancer research group A6702 diffusion imaging trial[J]. Radiology, 2021, 298(1): 60-70. DOI: 10.1148/radiol.2020202465.
[29]
KAYADIBI Y, UCAR N, AKAN Y N, et al. Magnetic resonance imaging findings associated with recurrence in idiopathic granulomatous mastitis[J/OL]. Clin Imaging, 2022, 84: 47-53 [2025-04-13]. https://pubmed.ncbi.nlm.nih.gov/35134676/. DOI: 10.1016/j.clinimag.2022.01.010.
[30]
ZHANG L N, HU J N, GUYS N, et al. Diffusion-weighted imaging in relation to morphology on dynamic contrast enhancement MRI: the diagnostic value of characterizing non-puerperal mastitis[J]. Eur Radiol, 2018, 28(3): 992-999. DOI: 10.1007/s00330-017-5051-1.
[31]
CHOU S S, ROMANOFF J, LEHMAN C D, et al. Preoperative breast MRI for newly diagnosed ductal carcinoma in situ: imaging features and performance in a multicenter setting (ECOG-ACRIN E4112 trial)[J/OL]. Radiology, 2021, 301(1): E381 [2025-04-13]. https://pubmed.ncbi.nlm.nih.gov/34543146/. DOI: 10.1148/radiol.2021219016.
[32]
YILMAZ R, BAYRAMOGLU Z, KARTAL M G, et al. Stromal fibrosis: imaging features with diagnostic contribution of diffusion-weighted MRI[J/OL]. Br J Radiol, 2018, 91(1085): 20170706 [2025-04-13]. https://pubmed.ncbi.nlm.nih.gov/29388800/. DOI: 10.1259/bjr.20170706.
[33]
ZHAO Q F, XIE T W, FU C X, et al. Differentiation between idiopathic granulomatous mastitis and invasive breast carcinoma, both presenting with non-mass enhancement without rim-enhanced masses: The value of whole-lesion histogram and texture analysis using apparent diffusion coefficient[J/OL]. Eur J Radiol, 2020, 123: 108782 [2025-04-13]. https://pubmed.ncbi.nlm.nih.gov/31864142/. DOI: 10.1016/j.ejrad.2019.108782.
[34]
TANG Q, LI Q, XIE D, et al. An apparent diffusion coefficient histogram method versus a traditional 2-dimensional measurement method for identifying non-puerperal mastitis from breast cancer at 3.0 T[J]. J Comput Assist Tomogr, 2018, 42(5): 776-783. DOI: 10.1097/RCT.0000000000000758.
[35]
PENG J J, ZHAO M, WANG S. Discrimination model construction for non-lactational mastitis and breast cancer based on imaging features[J]. Br J Hosp Med (Lond), 2024, 85(10): 1-15. DOI: 10.12968/hmed.2024.0278.
[36]
CHEN R, HU B Q, ZHANG Y L, et al. Differential diagnosis of plasma cell mastitis and invasive ductal carcinoma using multiparametric MRI[J]. Gland Surg, 2020, 9(2): 278-290. DOI: 10.21037/gs.2020.03.30.
[37]
UCAR E A, DURUR-SUBASI I, YILMAZ K B, et al. Quantitative perfusion parameters of benign inflammatory breast pathologies: a descriptive study[J/OL]. Clin Imaging, 2020, 68: 249-256 [2025-04-13]. https://pubmed.ncbi.nlm.nih.gov/32911313/. DOI: 10.1016/j.clinimag.2020.08.024.
[38]
LIU X M, ZHANG J, ZHOU J J, et al. Multi-modality radiomics nomogram based on DCE-MRI and ultrasound images for benign and malignant breast lesion classification[J/OL]. Front Oncol, 2022, 12: 992509 [2025-04-13]. https://pubmed.ncbi.nlm.nih.gov/36531052/. DOI: 10.3389/fonc.2022.992509.
[39]
RAMTOHUL T, DJERROUDI L, LISSAVALID E, et al. Multiparametric MRI and radiomics for the prediction of HER2-zero, -low, and-positive breast cancers[J/OL]. Radiology, 2023, 308(2): e222646 [2025-04-13]. https://pubmed.ncbi.nlm.nih.gov/37526540/. DOI: 10.1148/radiol.222646.
[40]
WANG W, ZHANG W Y, YU T, et al. Clinical-radiomics model for predicting internal mammary lymph node metastasis in operable breast cancer patients[J/OL]. Front Oncol, 2025, 15: 1477866 [2025-04-13]. https://pubmed.ncbi.nlm.nih.gov/40248206/. DOI: 10.3389/fonc.2025.1477866.
[41]
MA Q Q, LU X F, QIN X C, et al. A sonogram radiomics model for differentiating granulomatous lobular mastitis from invasive breast cancer: a multicenter study[J]. Radiol Med, 2023, 128(10): 1206-1216. DOI: 10.1007/s11547-023-01694-7.
[42]
ZHENG Y, BAI L, SUN J, et al. Diagnostic value of radiomics model based on gray-scale and contrast-enhanced ultrasound for inflammatory mass stage periductal mastitis/duct ectasia[J/OL]. Front Oncol, 2022, 12: 981106 [2025-04-13]. https://pubmed.ncbi.nlm.nih.gov/36203455/. DOI: 10.3389/fonc.2022.981106.
[43]
DAI S P, SUN W J, ZHANG C H, et al. Value of image texture analysis of ADC in the differential diagnosis of plasma cell mastitis and ductal carcinoma in situ[J]. J Med Imag, 2022, 32(3): 445-448, 461.
[44]
KAYADIBI Y, SARACOGLU M S, KURT S A, et al. Differentiation of malignancy and idiopathic granulomatous mastitis presenting as non-mass lesions on MRI: radiological, clinical, radiomics, and clinical-radiomics models[J]. Acad Radiol, 2024, 31(9): 3511-3523. DOI: 10.1016/j.acra.2024.03.025.
[45]
HUANG Z Y, LIN X, CHEN X Y, et al. The value of radiomics based on ADC and DCE-MRI in the differential diagnosis between non-puerperal mastitis and non-mass breast cancer[J]. J Pract Radiol, 2024, 40(10): 1636-1640. DOI: 10.3969/j.issn.1002-1671.2024.10.013.
[46]
LIANG X H, YU X Y, GAO T H. Machine learning with magnetic resonance imaging for prediction of response to neoadjuvant chemotherapy in breast cancer: a systematic review and meta-analysis[J/OL]. Eur J Radiol, 2022, 150: 110247 [2025-04-13]. https://pubmed.ncbi.nlm.nih.gov/35290910/. DOI: 10.1016/j.ejrad.2022.110247.
[47]
ZHOU Y, FENG B J, YUE W W, et al. Differentiating non-lactating mastitis and malignant breast tumors by deep-learning based AI automatic classification system: a preliminary study[J/OL]. Front Oncol, 2022, 12: 997306 [2025-04-13]. https://pubmed.ncbi.nlm.nih.gov/36185190/. DOI: 10.3389/fonc.2022.997306.
[48]
LEI Y M, YIN M, YU M H, et al. Artificial intelligence in medical imaging of the breast[J/OL]. Front Oncol, 2021, 11: 600557 [2025-04-13]. https://pubmed.ncbi.nlm.nih.gov/34367938/. DOI: 10.3389/fonc.2021.600557.
[49]
ZHANG M, HE G Y, PAN C J, et al. Discrimination of benign and malignant breast lesions on dynamic contrast-enhanced magnetic resonance imaging using deep learning[J]. J Cancer Res Ther, 2023, 19(6): 1589-1596. DOI: 10.4103/jcrt.jcrt_325_23.
[50]
CHUNG M, CALABRESE E, MONGAN J, et al. Deep learning to simulate contrast-enhanced breast MRI of invasive breast cancer[J/OL]. Radiology, 2023, 306(3): e239004 [2025-04-13]. https://pubmed.ncbi.nlm.nih.gov/36803003/. DOI: 10.1148/radiol.239004.
[51]
DAI Y, LIAN C, ZHANG Z, et al. Development and validation of a deep learning system to differentiate HER2-zero, HER2-low, and HER2-positive breast cancer based on dynamic contrast-enhanced MRI[J]. J Magn Reson Imaging, 2025, 61(5): 2212-2220. DOI: 10.1002/jmri.29670.
[52]
ZHENG H, JIAN L, LI L, et al. Prior clinico-radiological features informed multi-modal MR images convolution neural network: a novel deep learning framework for prediction of lymphovascular invasion in breast cancer[J/OL]. Cancer Med, 2024, 13(3): e6932 [2025-04-13]. https://pubmed.ncbi.nlm.nih.gov/38230837/. DOI: 10.1002/cam4.6932.
[53]
GUO Y J, YIN R, ZHANG Q, et al. MRI-based kinetic heterogeneity evaluation in the accurate access of axillary lymph node status in breast cancer using a hybrid CNN-RNN model[J]. J Magn Reson Imaging, 2024, 60(4): 1352-1364. DOI: 10.1002/jmri.29225.

PREV Advances in the application of magnetic resonance habitat imaging for the diagnosis and treatment of breast cancer
NEXT Advances in radiomics for predicting the efficacy of local treatments in liver malignancies
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn