Share:
Share this content in WeChat
X
Review
Research progress of indicators related to the tumor immune microenvironment of intrahepatic cholangiocarcinoma based on radiomics
TIAN Jiaxuan  MA Jiamei  LI Xiaomeng  YIN Xiaoping 

Cite this article as: TIAN J X, MA J M, LI X M, et al. Research progress of indicators related to the tumor immune microenvironment of intrahepatic cholangiocarcinoma based on radiomics[J]. Chin J Magn Reson Imaging, 2025, 16(7): 173-176, 201. DOI:10.12015/issn.1674-8034.2025.07.028.


[Abstract] Intrahepatic cholangiocarcinoma (ICC) accounts for 10% to 20% of primary liver cancers, with its incidence increasing annually. Dynamic changes in key immune indicators within the tumor immune microenvironment (TIME) significantly impact ICC prognosis. Due to the limitations and lag of existing detection methods, radiomics technology enables non-invasive prediction and timely monitoring of TIME immune indicators, enhancing precise ICC diagnosis and treatment by analyzing intratumoral and peritumoral information. Radiomics uses machine learning to high-throughput extract imaging features, integrating clinical, pathological, genetic, and immunological parameters to construct predictive models for immune indicators. These models support ICC risk stratification, prognosis assessment, and development of novel immunotherapies. Current limitations include single predictive indicators and suboptimal model generalization. Future directions involve deep integration with radiogenomics, spatial transcriptomics, and other omics, developing multimodal fusion models, and establishing multi-center standardized databases to advance clinical translation. This review summarizes the quantification of TIME-related immune indicators based on radiomics and explores the correlations between these indicators. Provide a new perspective for the clinical diagnosis and treatment of ICC.
[Keywords] intrahepatic cholangiocarcinoma;tumor immune microenvironment;magnetic resonance imaging;radiomics;lymphocyte

TIAN Jiaxuan1, 2   MA Jiamei1, 2   LI Xiaomeng1, 2   YIN Xiaoping1, 2*  

1 Department of Radiology, Affiliated Hospital of Hebei University, Baoding 071000, China

2 Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Baoding 071000, China

Corresponding author: YIN X P, E-mail: yinxiaoping78@sina.com

Conflicts of interest   None.

Received  2025-03-11
Accepted  2025-07-07
DOI: 10.12015/issn.1674-8034.2025.07.028
Cite this article as: TIAN J X, MA J M, LI X M, et al. Research progress of indicators related to the tumor immune microenvironment of intrahepatic cholangiocarcinoma based on radiomics[J]. Chin J Magn Reson Imaging, 2025, 16(7): 173-176, 201. DOI:10.12015/issn.1674-8034.2025.07.028.

[1]
GRANATA V, FUSCO R, DE MUZIO F, et al. Risk assessment and cholangiocarcinoma: diagnostic management and artificial intelligence[J/OL]. Biology (Basel), 2023, 12(2): 213 [2025-01-18]. https://pubmed.ncbi.nlm.nih.gov/36829492/. DOI: 10.3390/biology12020213.
[2]
MORIS D, PALTA M, KIM C, et al. Advances in the treatment of intrahepatic cholangiocarcinoma: an overview of the current and future therapeutic landscape for clinicians[J]. CA Cancer J Clin, 2023, 73(2): 198-222. DOI: 10.3322/caac.21759.
[3]
IRIZATO M, MINAMIGUCHI K, UCHIYAMA T, et al. Hepatobiliary and pancreatic neoplasms: essential predictive imaging features for personalized therapy[J/OL]. Radiographics, 2025, 45(3): e240068 [2025-01-18]. https://pubmed.ncbi.nlm.nih.gov/39913319/. DOI: 10.1148/rg.240068.
[4]
BO Z Y, CHEN B, YANG Y, et al. Machine learning radiomics to predict the early recurrence of intrahepatic cholangiocarcinoma after curative resection: A multicentre cohort study[J]. Eur J Nucl Med Mol Imaging, 2023, 50(8): 2501-2513. DOI: 10.1007/s00259-023-06184-6.
[5]
CHEN B, MAO Y C, LI J C, et al. Predicting very early recurrence in intrahepatic cholangiocarcinoma after curative hepatectomy using machine learning radiomics based on CECT: a multi-institutional study[J/OL]. Comput Biol Med, 2023, 167: 107612 [2025-01-20]. https://pubmed.ncbi.nlm.nih.gov/37939408/. DOI: 10.1016/j.compbiomed.2023.107612.
[6]
FABRIS L, SATO K, ALPINI G, et al. The tumor microenvironment in cholangiocarcinoma progression[J]. Hepatology, 2021, 73(Suppl 1): 75-85. DOI: 10.1002/hep.31410.
[7]
FU T, DAI L J, WU S Y, et al. Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response[J/OL]. J Hematol Oncol, 2021, 14(1): 98 [2025-01-20]. https://pubmed.ncbi.nlm.nih.gov/34172088/. DOI: 10.1186/s13045-021-01103-4.
[8]
FRIDMAN W H, MEYLAN M, PETITPREZ F, et al. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome[J]. Nat Rev Clin Oncol, 2022, 19(7): 441-457. DOI: 10.1038/s41571-022-00619-z.
[9]
CHRISTOFIDES A, STRAUSS L, YEO A, et al. The complex role of tumor-infiltrating macrophages[J]. Nat Immunol, 2022, 23(8): 1148-1156. DOI: 10.1038/s41590-022-01267-2.
[10]
GRETEN T F, SCHWABE R, BARDEESY N, et al. Immunology and immunotherapy of cholangiocarcinoma[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(6): 349-365. DOI: 10.1038/s41575-022-00741-4.
[11]
CHEN S Z, SAEED A F U H, LIU Q, et al. Macrophages in immunoregulation and therapeutics[J/OL]. Signal Transduct Target Ther, 2023, 8(1): 207 [2025-01-20]. https://pubmed.ncbi.nlm.nih.gov/37211559/. DOI: 10.1038/s41392-023-01452-1.
[12]
NISHIDA N, KUDO M. Genetic/epigenetic alteration and tumor immune microenvironment in intrahepatic cholangiocarcinoma: transforming the immune microenvironment with molecular-targeted agents[J]. Liver Cancer, 2024, 13(2): 136-149. DOI: 10.1159/000534443.
[13]
BERA K, BRAMAN N, GUPTA A, et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology[J]. Nat Rev Clin Oncol, 2022, 19(2): 132-146. DOI: 10.1038/s41571-021-00560-7.
[14]
KANG W D, QIU X, LUO Y G, et al. Application of radiomics-based multiomics combinations in the tumor microenvironment and cancer prognosis[J/OL]. J Transl Med, 2023, 21(1): 598 [2025-02-10]. https://pubmed.ncbi.nlm.nih.gov/37674169/. DOI: 10.1186/s12967-023-04437-4.
[15]
DERCLE L, MCGALE J, SUN S, et al. Artificial intelligence and radiomics: fundamentals, applications, and challenges in immunotherapy[J/OL]. J Immunother Cancer, 2022, 10(9): e005292 [2025-02-11]. https://pubmed.ncbi.nlm.nih.gov/36180071/. DOI: 10.1136/jitc-2022-005292.
[16]
XU Y, SU G H, MA D, et al. Technological advances in cancer immunity: from immunogenomics to single-cell analysis and artificial intelligence[J/OL]. Signal Transduct Target Ther, 2021, 6(1): 312 [2025-02-11]. https://pubmed.ncbi.nlm.nih.gov/34417437/. DOI: 10.1038/s41392-021-00729-7.
[17]
DENG L M, CHEN B, ZHAN C Y, et al. A novel clinical-radiomics model based on sarcopenia and radiomics for predicting the prognosis of intrahepatic cholangiocarcinoma after radical hepatectomy[J/OL]. Front Oncol, 2021, 11: 744311 [2024-12-21]. https://pubmed.ncbi.nlm.nih.gov/34868941/. DOI: 10.3389/fonc.2021.744311.
[18]
CHEN L, YIN G T, WANG Z Y, et al. A predictive radiotranscriptomics model based on DCE-MRI for tumor immune landscape and immunotherapy in cholangiocarcinoma[J]. Biosci Trends, 2024, 18(3): 263-276. DOI: 10.5582/bst.2024.01121.
[19]
WANG L Y, LI P, GONG S, et al. Construction of a novel cuproptosis-related gene signature and integrative analyses in cholangiocarcinoma[J/OL]. Heliyon, 2025, 11(1): e41600 [2025-02-17]. https://pubmed.ncbi.nlm.nih.gov/39866451/. DOI: 10.1016/j.heliyon.2024.e41600.
[20]
YE Y H, XIN H Y, LI J L, et al. Development and validation of a stromal-immune signature to predict prognosis in intrahepatic cholangiocarcinoma[J]. Clin Mol Hepatol, 2024, 30(4): 914-928. DOI: 10.3350/cmh.2024.0296.
[21]
XIA T, LI K Y, NIU N, et al. Immune cell atlas of cholangiocarcinomas reveals distinct tumor microenvironments and associated prognoses[J/OL]. J Hematol Oncol, 2022, 15(1): 37 [2025-02-17]. https://pubmed.ncbi.nlm.nih.gov/35346322/. DOI: 10.1186/s13045-022-01253-z.
[22]
VIJGEN S, TERRIS B, RUBBIA-BRANDT L. Pathology of intrahepatic cholangiocarcinoma[J]. Hepatobiliary Surg Nutr, 2017, 6(1): 22-34. DOI: 10.21037/hbsn.2016.11.04.
[23]
LI Q, CHE F, WEI Y, et al. Role of noninvasive imaging in the evaluation of intrahepatic cholangiocarcinoma: from diagnosis and prognosis to treatment response[J]. Expert Rev Gastroenterol Hepatol, 2021, 15(11): 1267-1279. DOI: 10.1080/17474124.2021.1974294.
[24]
ATANASOV G, DIETEL C, FELDBRÜGGE L, et al. Tumor necrosis and infiltrating macrophages predict survival after curative resection for cholangiocarcinoma[J/OL]. Oncoimmunology, 2017, 6(8): e1331806 [2025-02-17]. https://pubmed.ncbi.nlm.nih.gov/28919993/. DOI: 10.1080/2162402X.2017.1331806.
[25]
YUAN H, LIN Z L, LIU Y J, et al. Intrahepatic cholangiocarcinoma induced M2-polarized tumor-associated macrophages facilitate tumor growth and invasiveness[J/OL]. Cancer Cell Int, 2020, 20(1): 586 [2025-02-17]. https://pubmed.ncbi.nlm.nih.gov/33372604/. DOI: 10.1186/s12935-020-01687-w.
[26]
YANG L, HAN P S, CUI T, et al. M2 macrophage inhibits the antitumor effects of Lenvatinib on intrahepatic cholangiocarcinoma[J/OL]. Front Immunol, 2023, 14: 1251648 [2025-02-18]. https://pubmed.ncbi.nlm.nih.gov/37809069/. DOI: 10.3389/fimmu.2023.1251648.
[27]
YANG T, DENG Z D, XU L, et al. Macrophages-aPKCɩ-CCL5 feedback loop modulates the progression and chemoresistance in cholangiocarcinoma[J/OL]. J Exp Clin Cancer Res, 2022, 41(1): 23 [2025-02-20]. https://pubmed.ncbi.nlm.nih.gov/35033156/. DOI: 10.1186/s13046-021-02235-8.
[28]
JI G W, XU Z G, LIU S C, et al. Radiogenomics of intrahepatic cholangiocarcinoma predicts immunochemotherapy response and identifies therapeutic target[J/OL]. Clin Mol Hepatol, 2025 [2025-05-08]. https://pubmed.ncbi.nlm.nih.gov/39924997/. DOI: 10.3350/cmh.2024.0895.
[29]
YOON S B, WOO S M, CHUN J W, et al. The predictive value of PD-L1 expression in response to anti-PD-1/PD-L1 therapy for biliary tract cancer: a systematic review and meta-analysis[J/OL]. Front Immunol, 2024, 15: 1321813 [2025-02-20]. https://pubmed.ncbi.nlm.nih.gov/38605964/. DOI: 10.3389/fimmu.2024.1321813.
[30]
ZHANG J, WU Z R, ZHANG X, et al. Machine learning: an approach to preoperatively predict PD-1/PD-L1 expression and outcome in intrahepatic cholangiocarcinoma using MRI biomarkers[J/OL]. ESMO Open, 2020, 5(6): e000910 [2025-02-20]. https://pubmed.ncbi.nlm.nih.gov/33239315/. DOI: 10.1136/esmoopen-2020-000910.
[31]
LEI Z Q, MA W H, SI A F, et al. Effect of different PD-1 inhibitor combination therapies for unresectable intrahepatic cholangiocarcinoma[J]. Aliment Pharmacol Ther, 2023, 58(6): 611-622. DOI: 10.1111/apt.17623.
[32]
BANNA G L, OLIVIER T, RUNDO F, et al. The promise of digital biopsy for the prediction of tumor molecular features and clinical outcomes associated with immunotherapy[J/OL]. Front Med (Lausanne), 2019, 6: 172 [2025-02-24]. https://pubmed.ncbi.nlm.nih.gov/31417906/. DOI: 10.3389/fmed.2019.00172.
[33]
SUN R, LIMKIN E J, VAKALOPOULOU M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study[J]. Lancet Oncol, 2018, 19(9): 1180-1191. DOI: 10.1016/S1470-2045(18)30413-3.
[34]
CHEN J, AMOOZGAR Z, LIU X, et al. Reprogramming the intrahepatic cholangiocarcinoma immune microenvironment by chemotherapy and CTLA-4 blockade enhances anti-PD-1 therapy[J]. Cancer Immunol Res, 2024, 12(4): 400-412. DOI: 10.1158/2326-6066.CIR-23-0486.
[35]
WARREN E A K, MAITHEL S K. Molecular pathology for cholangiocarcinoma: a review of actionable genetic targets and their relevance to adjuvant & neoadjuvant therapy, staging, follow-up, and determination of minimal residual disease[J]. Hepatobiliary Surg Nutr, 2024, 13(1): 29-38. DOI: 10.21037/hbsn-22-563.
[36]
GAO S S, SUN W, ZHANG Y F, et al. Correlation analysis of MR elastography and Ki-67 expression in intrahepatic cholangiocarcinoma[J/OL]. Insights Imaging, 2023, 14(1): 204 [2025-02-24]. https://pubmed.ncbi.nlm.nih.gov/38001349/. DOI: 10.1186/s13244-023-01559-7.
[37]
PENG Y T, ZHOU C Y, LIN P, et al. Preoperative ultrasound radiomics signatures for noninvasive evaluation of biological characteristics of intrahepatic cholangiocarcinoma[J]. Acad Radiol, 2020, 27(6): 785-797. DOI: 10.1016/j.acra.2019.07.029.
[38]
WANG Q, WANG C, QIAN X L, et al. Multiparametric magnetic resonance imaging-derived radiomics for the prediction of Ki67 expression in intrahepatic cholangiocarcinoma[J]. Acta Radiol, 2025, 66(4): 368-378. DOI: 10.1177/02841851241310394.
[39]
VELLA G, GUELFI S, BERGERS G. High endothelial venules: a vascular perspective on tertiary lymphoid structures in cancer[J/OL]. Front Immunol, 2021, 12: 736670 [2025-02-28]. https://pubmed.ncbi.nlm.nih.gov/34484246/. DOI: 10.3389/fimmu.2021.736670.
[40]
SHANG T Y, JIANG T Y, LU T, et al. Tertiary lymphoid structures predict the prognosis and immunotherapy response of cholangiocarcinoma[J/OL]. Front Immunol, 2023, 14: 1166497 [2025-02-28]. https://pubmed.ncbi.nlm.nih.gov/37234171/. DOI: 10.3389/fimmu.2023.1166497.
[41]
XU Y, LI Z, ZHOU Y Z, et al. Using immunovascular characteristics to predict very early recurrence and prognosis of resectable intrahepatic cholangiocarcinoma[J/OL]. BMC Cancer, 2023, 23(1): 1009 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/37858111/. DOI: 10.1186/s12885-023-11476-z.
[42]
DING G Y, MA J Q, YUN J P, et al. Distribution and density of tertiary lymphoid structures predict clinical outcome in intrahepatic cholangiocarcinoma[J]. J Hepatol, 2022, 76(3): 608-618. DOI: 10.1016/j.jhep.2021.10.030.
[43]
VANHERSECKE L, BRUNET M, GUÉGAN J P, et al. Mature tertiary lymphoid structures predict immune checkpoint inhibitor efficacy in solid tumors independently of PD-L1 expression[J]. Nat Cancer, 2021, 2(8): 794-802. DOI: 10.1038/s43018-021-00232-6.
[44]
ROBERT A W, MARCON B H, ANGULSKI A B B, et al. Selective loading and variations in the miRNA profile of extracellular vesicles from endothelial-like cells cultivated under normoxia and hypoxia[J/OL]. Int J Mol Sci, 2022, 23(17): 10066 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/36077462/. DOI: 10.3390/ijms231710066.
[45]
WANG X C, LI X F, ZHAO J, et al. Rapid generation of hPSC-derived high endothelial venule organoids with in vivo ectopic lymphoid tissue capabilities[J]. Adv Mater, 2024, 36(15): e2308760. DOI: 10.1002/adma.202308760.
[46]
YANG M, CHE Y R, LI K Z, et al. Detection and quantitative analysis of tumor-associated tertiary lymphoid structures[J]. J Zhejiang Univ Sci B, 2023, 24(9): 779-795. DOI: 10.1631/jzus.B2200605.
[47]
XU Y, LI Z, YANG Y, et al. A CT-based radiomics approach to predict intra-tumoral tertiary lymphoid structures and recurrence of intrahepatic cholangiocarcinoma[J/OL]. Insights Imaging, 2023, 14(1): 173 [2024-11-12]. https://pubmed.ncbi.nlm.nih.gov/37840098/. DOI: 10.1186/s13244-023-01527-1.
[48]
XU Y, LI Z, YANG Y, et al. Association between MRI radiomics and intratumoral tertiary lymphoid structures in intrahepatic cholangiocarcinoma and its prognostic significance[J/OL]. J Magn Reson Imaging, 2024, 60(2): 715-728. DOI: 10.1002/jmri.29128.

PREV Advances in radiomics for predicting the efficacy of local treatments in liver malignancies
NEXT Research progress of radiomics in the diagnosis and treatment of gastric cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn