Share:
Share this content in WeChat
X
Review
Research progress of radiomics in the diagnosis and treatment of gastric cancer
LIAO Manyun  HUA Li  CHEN Shaojun 

Cite this article as: LIAO M Y, HUA L, CHEN S J. Research progress of radiomics in the diagnosis and treatment of gastric cancer[J]. Chin J Magn Reson Imaging, 2025, 16(7): 177-184. DOI:10.12015/issn.1674-8034.2025.07.029.


[Abstract] Gastric cancer is a high-incidence gastrointestinal malignancy in the world, and early diagnosis is difficult and the prognosis is poor. The accuracy of traditional imaging diagnosis is low, while pathological diagnosis has spatial heterogeneity and invasive limitations. Radiomics provides a non-invasive and reproducible new method for visualizing tumor heterogeneity and analyzing biological behaviors through high-throughput extraction and quantitative analysis of image features. Current research focuses on the application of radiomics in gastric cancer pathological classification (e.g., Lauren classification), molecular marker prediction, TNM staging and efficacy evaluation, and its models have shown high sensitivity and specificity in clinical validation, but still face challenges such as insufficient standardization, small sample size and lack of external validation. This article systematically reviews the research progress of radiomics in the diagnosis and treatment of gastric cancer, aiming to provide new ideas for individualized precision treatment and promote clinical translation.
[Keywords] radiomics;gastric cancer;magnetic resonance imaging;diagnosis;efficacy

LIAO Manyun   HUA Li   CHEN Shaojun*  

Department of Oncology, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545005, China

Corresponding author: CHEN S J, E-mail: chenshaojun388@163.com

Conflicts of interest   None.

Received  2025-02-20
Accepted  2025-07-07
DOI: 10.12015/issn.1674-8034.2025.07.029
Cite this article as: LIAO M Y, HUA L, CHEN S J. Research progress of radiomics in the diagnosis and treatment of gastric cancer[J]. Chin J Magn Reson Imaging, 2025, 16(7): 177-184. DOI:10.12015/issn.1674-8034.2025.07.029.

[1]
SIEGEL R L, KRATZER T B, GIAQUINTO A N, et al. Cancer statistics, 2025[J]. CA A Cancer J Clin, 2025, 75(1): 10-45. DOI: 10.3322/caac.21871.
[2]
ZHANG T C, CHEN H, YIN X L, et al. Changing trends of disease burden of gastric cancer in China from 1990 to 2019 and its predictions: Findings from Global Burden of Disease Study[J]. Chin J Cancer Res, 2021, 33(1): 11-26. DOI: 10.21147/j.issn.1000-9604.2021.01.02.
[3]
National Health Commission of the People's Republic of China. The screening and early diagnosis and treatment plan for gastric cancer(2024 edition)[J/OL]. J Dig Oncol Electron Version, 2024, 16(4): 414-415 [2025-02-21]. https://www.jdocn.com/onlinebrowsing/detail_763.html.
[4]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[5]
LI J Z, TANG L. Advances in radiomics research on efficacy evaluation of neoadjuvant therapy for gastrointestinal cancer[J]. Chin J Pract Surg, 2023, 43(3): 252-259. DOI: 10.19538/j.cjps.issn1005-2208.2023.03.02.
[6]
HOU J, LIU W Y. Advance of peritumoral radiomics research[J]. Chin J Magn Reson Imag, 2024, 15(3): 230-234. DOI: 10.12015/issn.1674-8034.2024.03.038.
[7]
JIA L L, CUI Y Q, HUANG G. Research progress of colorectal cancer radiogenomics[J]. Chin J Magn Reson Imag, 2022, 13(12): 159-162. DOI: 10.12015/issn.1674-8034.2022.12.030.
[8]
ZHANG M H, WANG Y, LV M T, et al. Trends and hotspots in global radiomics research: A bibliometric analysis[J/OL]. Technol Cancer Res Treat, 2024, 23: 15330338241235769 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/38465611/. DOI: 10.1177/15330338241235769.
[9]
WHYBRA P, ZWANENBURG A, ANDREARCZYK V, et al. The image biomarker standardization initiative: standardized convolutional filters for reproducible radiomics and enhanced clinical insights[J/OL]. Radiology, 2024, 310(2): e231319. [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/38319168/. DOI: 10.1148/radiol.231319.
[10]
LAUREN P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. an attempt at a histo-clinical classification[J]. Acta Pathol Microbiol Scand, 1965, 64: 31-49. DOI: 10.1111/apm.1965.64.1.31.
[11]
WANG X X, DING Y, WANG S W, et al. Intratumoral and peritumoral radiomics analysis for preoperative Lauren classification in gastric cancer[J/OL]. Cancer Imaging, 2020, 20(1): 83 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/33228815/. DOI: 10.1186/s40644-020-00358-3.
[12]
HUANG J, YAO H S, LI Y X, et al. Development and validation of a CT-based radiomics nomogram for preoperative prediction of tumor histologic grade in gastric adenocarcinoma[J]. Chin J Cancer Res, 2021, 33(1): 69-78. DOI: 10.21147/j.issn.1000-9604.2021.01.08.
[13]
WANG Y, LIU W, YU Y, et al. Potential value of CT radiomics in the distinction of intestinal-type gastric adenocarcinomas[J]. Eur Radiol, 2020, 30(5): 2934-2944. DOI: 10.1007/s00330-019-06629-3.
[14]
LI C S, WANG M C, CHENG X B, et al. Nerve invasion as an independent predictor of poor prognosis in gastric cancer after curative resection[J/OL]. Medicine (Baltimore), 2022, 101(33): e30084 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/35984131/. DOI: 10.1097/MD.0000000000030084.
[15]
WOODHAM B L, CHMELO J, DONOHOE C L, et al. Prognostic significance of lymphatic, venous and perineural invasion after neoadjuvant chemotherapy in patients with gastric adenocarcinoma[J]. Ann Surg Oncol, 2020, 27(9): 3296-3304. DOI: 10.1245/s10434-020-08389-7.
[16]
LI Q, FENG Q X, QI L, et al. Prognostic aspects of lymphovascular invasion in localized gastric cancer: new insights into the radiomics and deep transfer learning from contrast-enhanced CT imaging[J]. Abdom Radiol (NY), 2022, 47(2): 496-507. DOI: 10.1007/s00261-021-03309-z.
[17]
YARDIMCI A H, KOÇAK B, BEKTAŞ C T, et al. Tubular gastric adenocarcinoma: machine learning-based CT texture analysis for predicting lymphovascular and perineural invasion[J]. Diagn Interv Radiol, 2020, 26(6): 515-522. DOI: 10.5152/dir.2020.19507.
[18]
HE Y Y, YANG M, HOU R, et al. Preoperative prediction of perineural invasion and lymphovascular invasion with CT radiomics in gastric cancer[J/OL]. Eur J Radiol Open, 2024, 12: 100550 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/38314183/. DOI: 10.1016/j.ejro.2024.100550.
[19]
JIA H, LI R Z, LIU Y W, et al. Preoperative prediction of perineural invasion and prognosis in gastric cancer based on machine learning through a radiomics-clinicopathological nomogram[J/OL]. Cancers (Basel), 2024, 16(3): 614 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/38339364/. DOI: 10.3390/cancers16030614.
[20]
SALNIKOV M, PRUSINKIEWICZ M A, LIN S, et al. Tumor-infiltrating T cells in EBV-associated gastric carcinomas exhibit high levels of multiple markers of activation, effector gene expression, and exhaustion[J/OL]. Viruses, 2023, 15(1): 176 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/36680216/. DOI: 10.3390/v15010176.
[21]
LIAN J, ZHANG G J, ZHANG Y, et al. PD-L1 and HER2 expression in gastric adenocarcinoma and their prognostic significance[J]. Dig Liver Dis, 2022, 54(10): 1419-1427. DOI: 10.1016/j.dld.2022.01.128.
[22]
YOSHIDA T, OGURA G, TANABE M, et al. Clinicopathological features of PD-L1 protein expression, EBV positivity, and MSI status in patients with advanced gastric and esophagogastric junction adenocarcinoma in Japan[J]. Cancer Biol Ther, 2022, 23(1): 191-200. DOI: 10.1080/15384047.2022.2038002.
[23]
SUN S S, LI L, XU M Y, et al. Epstein-Barr virus positive gastric cancer: the pathological basis of CT findings and radiomics models prediction[J]. Abdom Radiol (NY), 2024, 49(6): 1779-1791. DOI: 10.1007/s00261-024-04306-8.
[24]
GENG L, ZONG R L, WANG W T, et al. The value of a nomogram based on clinical data and contrast enhanced CT radiomics in the preoperative prediction of Epstein-Barr virus-associated gastric carcinoma[J]. Natl Med J China, 2022, 102(37): 2956-2962. DOI: 10.3760/cma.j.cn112137-20220225-00397.
[25]
GU X L. Research on CT imaging radiomics prediction of PD-L1 expression in gastric cancer[D]. Shijiazhuang: Hebei Medical University, 2024. DOI: 10.27111/d.cnki.ghyku.2024.000130.
[26]
CHEN D M, ZHOU R, LI B. Preoperative prediction of her-2 and ki-67 status in gastric cancer using 18F-FDG PET/CT radiomics features of visceral adipose tissue[J]. Br J Hosp Med (Lond), 2024, 85(9): 1-18. DOI: 10.12968/hmed.2024.0350.
[27]
WANG Y, YU Y, HAN W, et al. CT radiomics for distinction of human epidermal growth factor receptor 2 negative gastric cancer[J/OL]. Acad Radiol, 2021, 28(3): e86-e92 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/38314183/. DOI: 10.1016/j.acra.2020.02.018.
[28]
TONG Y H, LI J Y, CHEN J Y, et al. A radiomics nomogram integrated with clinic-radiological features for preoperative prediction of DNA mismatch repair deficiency in gastric adenocarcinoma[J/OL]. Front Oncol, 2022, 12: 865548 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/35912185/. DOI: 10.3389/fonc.2022.865548.
[29]
ZHAN P C, YANG S, LIU X, et al. A radiomics signature derived from CT imaging to predict MSI status and immunotherapy outcomes in gastric cancer: a multi-cohort study[J/OL]. BMC Cancer, 2024, 24(1): 404 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/38561648/. DOI: 10.1186/s12885-024-12174-0.
[30]
SHUR J D, DORAN S J, KUMAR S, et al. Radiomics in oncology: a practical guide[J]. Radiographics, 2021, 41(6): 1717-1732. DOI: 10.1148/rg.2021210037.
[31]
STANEK L, GURLICH R, MUSIL Z, et al. Monitoring EBV infection, MSI, PDL-1 expression, Her-2/neu amplification as a biomarker for PD-1 inhibition in gastric cancer[J]. Bratisl Lek Listy, 2022, 123(2): 83-86. DOI: 10.4149/BLL_2022_013.
[32]
TAN Y, FENG L J, HUANG Y H, et al. Development and validation of a Radiopathomics model based on CT scans and whole slide images for discriminating between Stage I-II and Stage III gastric cancer[J/OL]. BMC Cancer, 2024, 24(1): 368 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/38519974/. DOI: 10.1186/s12885-024-12021-2.
[33]
WANG J P, WU Z Q, FREUND J E, et al. Comparison between AJCC 8th edition gastric and esophageal ypTNM classification system in Siewert II esophagogastric junction adenocarcinomas: A retrospective study based on Eastern and Western Data[J/OL]. Eur J Surg Oncol, 2024, 50(12): 108730 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/39357412/. DOI: 10.1016/j.ejso.2024.108730.
[34]
JOSHI S S, BADGWELL B D. Current treatment and recent progress in gastric cancer[J]. CA Cancer J Clin, 2021, 71(3): 264-279. DOI: 10.3322/caac.21657.
[35]
CHANG X, GUO X, LI X L, et al. Potential value of radiomics in the identification of stage T3 and T4a esophagogastric junction adenocarcinoma based on contrast-enhanced CT images[J/OL]. Front Oncol, 2021, 11: 627947 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/33747947/. DOI: 10.3389/fonc.2021.627947.
[36]
SUN R J, FANG M J, TANG L, et al. CT-based deep learning radiomics analysis for evaluation of serosa invasion in advanced gastric cancer[J/OL]. Eur J Radiol, 2020, 132: 109277 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/32980726/. DOI: 10.1016/j.ejrad.2020.109277.
[37]
YANG L, SUN J Y, YU X B, et al. Diagnosis of serosal invasion in gastric adenocarcinoma by dual-energy CT radiomics: focusing on localized gastric wall and peritumoral radiomics features[J/OL]. Front Oncol, 2022, 12: 848425 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/35387116/. DOI: 10.3389/fonc.2022.848425.
[38]
YOU Y R, LIANG Y, CHEN L H, et al. Radiomics analysis of dual-energy CT-derived iodine maps for differentiating between T1/2 and T3/4a in gastric cancer: A multicenter study[J/OL]. Eur J Radiol, 2025, 186: 112054 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/40121898/. DOI: 10.1016/j.ejrad.2025.112054.
[39]
TAO J, LIU D, HU F B, et al. Development and validation of a computed tomography-based model for noninvasive prediction of the T stage in gastric cancer: multicenter retrospective study[J/OL]. J Med Internet Res, 2024, 26: e56851 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/39382960/. DOI: 10.2196/56851.
[40]
WANG Y, LIU W, YU Y, et al. CT radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer[J]. Eur Radiol, 2020, 30(2): 976-986. DOI: 10.1007/s00330-019-06398-z.
[41]
WANG X X, LI C, FANG M J, et al. Integrating No.3 lymph nodes and primary tumor radiomics to predict lymph node metastasis in T1-2 gastric cancer[J/OL]. BMC Med Imaging, 2021, 21(1): 58 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/33757460/. DOI: 10.1186/s12880-021-00587-3.
[42]
ZHENG Y L, QIU B J, LIU S L, et al. A transformer-based deep learning model for early prediction of lymph node metastasis in locally advanced gastric cancer after neoadjuvant chemotherapy using pretreatment CT images[J/OL]. EClinicalMedicine, 2024, 75: 102805 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/39281097/. DOI: 10.1016/j.eclinm.2024.102805.
[43]
WEI R, ZHUANG Y Z, WANG L Y, et al. Histogram-based analysis of diffusion-weighted imaging for predicting aggressiveness in papillary thyroid carcinoma[J/OL]. BMC Med Imaging, 2022, 22(1): 188 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/36324067/. DOI: 10.1186/s12880-022-00920-4.
[44]
ZHOU Y H, CHEN X L, ZHANG X, et al. Dual-phase contrast-enhanced CT-based intratumoral and peritumoral radiomics for preoperative prediction of lymph node metastasis in gastric cancer[J/OL]. BMC Gastroenterol, 2025, 25(1): 123 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/40021977/. DOI: 10.1186/s12876-025-03728-y.
[45]
YANG Y T, CHEN H, JI M, et al. A new radiomics approach combining the tumor and peri-tumor regions to predict lymph node metastasis and prognosis in gastric cancer[J/OL]. Gastroenterol Rep (Oxf), 2023, 7: goac080 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/36627981/. DOI: 10.1093/gastro/goac080.
[46]
SONG R R, CHEN W J, ZHANG J J, et al. Multiparametric MRI-based radiomics analysis for prediction of lymph node metastasis and survival outcome in gastric cancer: A dual-center study[J]. Acad Radiol, 2024, 31(12): 4900-4911. DOI: 10.1016/j.acra.2024.05.032.
[47]
XUE X Q, YU W J, SHAO X L, et al. Radiomics model based on preoperative 18F-fluorodeoxyglucose PET predicts N2-3b lymph node metastasis in gastric cancer patients[J]. Nucl Med Commun, 2022, 43(3): 340-349. DOI: 10.1097/MNM.0000000000001523.
[48]
DONG D, FANG M J, TANG L, et al. Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: an international multicenter study[J]. Ann Oncol, 2020, 31(7): 912-920. DOI: 10.1016/j.annonc.2020.04.003.
[49]
WANG Z, CHEN J Q, LIU J L, et al. Issues on peritoneal metastasis of gastric cancer: an update[J/OL]. World J Surg Oncol, 2019, 17(1): 215 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/31829265/. DOI: 10.1186/s12957-019-1761-y.
[50]
LIU S L, HE J, LIU S, et al. Radiomics analysis using contrast-enhanced CT for preoperative prediction of occult peritoneal metastasis in advanced gastric cancer[J]. Eur Radiol, 2020, 30(1): 239-246. DOI: 10.1007/s00330-019-06368-5.
[51]
WANG L L, LV P, XUE Z, et al. Novel CT based clinical nomogram comparable to radiomics model for identification of occult peritoneal metastasis in advanced gastric cancer[J]. Eur J Surg Oncol, 2022, 48(10): 2166-2173. DOI: 10.1016/j.ejso.2022.06.034.
[52]
DONG D, TANG L, LI Z Y, et al. Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer[J]. Ann Oncol, 2019, 30(3): 431-438. DOI: 10.1093/annonc/mdz001.
[53]
GWEE Y X, CHIA D K A, SO J, et al. Integration of genomic biology into therapeutic strategies of gastric cancer peritoneal metastasis[J/OL]. J Clin Oncol, 2022, 40(24): 2830 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/35649219/. DOI: 10.1200/JCO.21.02745.
[54]
ZHAO J J, ONG C J, SRIVASTAVA S, et al. Spatially resolved niche and tumor microenvironmental alterations in gastric cancer peritoneal metastases[J]. Gastroenterology, 2024, 167(7): 1384-1398 DOI: 10.1053/j.gastro.2024.08.007.
[55]
GRIZZI G, PETRELLI F, DI BARTOLOMEO M, et al. Preferred neoadjuvant therapy for gastric and gastroesophageal junction adenocarcinoma: a systematic review and network meta-analysis[J]. Gastric Cancer, 2022, 25(5): 982-987. DOI: 10.1007/s10120-022-01314-9.
[56]
SUN K Y, HU H T, CHEN S L, et al. CT-based radiomics scores predict response to neoadjuvant chemotherapy and survival in patients with gastric cancer[J/OL]. BMC Cancer, 2020, 20(1): 468 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/32450841/. DOI: 10.1186/s12885-020-06970-7.
[57]
LI Z H, ZHANG D F, DAI Y G, et al. Computed tomography-based radiomics for prediction of neoadjuvant chemotherapy outcomes in locally advanced gastric cancer: a pilot study[J]. Chin J Cancer Res, 2018, 30(4): 406-414. DOI: 10.21147/j.issn.1000-9604.2018.04.03.
[58]
SONG R R, CUI Y F, REN J L, et al. CT-based radiomics analysis in the prediction of response to neoadjuvant chemotherapy in locally advanced gastric cancer: a dual-center study[J]. Radiother Oncol, 2022, 171: 155-163. DOI: 10.1016/j.radonc.2022.04.023.
[59]
LI J, ZHANG H L, YIN H K, et al. Comparison of MRI and CT-based radiomics and their combination for early identification of pathological response to neoadjuvant chemotherapy in locally advanced gastric cancer[J]. J Magn Reson Imaging, 2023, 58(3): 907-923. DOI: 10.1002/jmri.28570.
[60]
ADILI D, MOHETAER A, ZHANG W B. Diagnostic accuracy of radiomics-based machine learning for neoadjuvant chemotherapy response and survival prediction in gastric cancer patients: a systematic review and meta-analysis[J/OL]. Eur J Radiol, 2024, 173: 111249 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/38382422/. DOI: 10.1016/j.ejrad.2023.111249.
[61]
LIU C C, LI L M, CHEN X Z, et al. Intratumoral and peritumoral radiomics predict pathological response after neoadjuvant chemotherapy against advanced gastric cancer[J/OL]. Insights Imaging, 2024, 15(1): 23 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/38270724/. DOI: 10.1186/s13244-023-01584-6.
[62]
THRIFT A P, EL-SERAG H B. Burden of gastric cancer[J]. Clin Gastroenterol Hepatol, 2020, 18(3): 534-542. DOI: 10.1016/j.cgh.2019.07.045.
[63]
LI J, YIN H K, WANG Y, et al. Multiparametric MRI-based radiomics nomogram for early prediction of pathological response to neoadjuvant chemotherapy in locally advanced gastric cancer[J]. Eur Radiol, 2023, 33(4): 2746-2756. DOI: 10.1007/s00330-022-09219-y.
[64]
AL-BATRAN S E, HOMANN N, PAULIGK C, et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial[J]. Lancet, 2019, 393(10184): 1948-1957. DOI: 10.1016/S0140-6736(18)32557-1.
[65]
ZHANG W T, WANG S J, DONG Q T, et al. Predictive nomogram for lymph node metastasis and survival in gastric cancer using contrast-enhanced computed tomography-based radiomics: a retrospective study[J/OL]. PeerJ, 2024, 12: e17111 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/38525272/. DOI: 10.7717/peerj.17111.
[66]
SHEN L L, ZHENG H L, DING F H, et al. Delta computed tomography radiomics features-based nomogram predicts long-term efficacy after neoadjuvant chemotherapy in advanced gastric cancer[J]. Radiol Med, 2023, 128(4): 402-414. DOI: 10.1007/s11547-023-01617-6.
[67]
CHEN W J, GAO C, HU C, et al. Risk stratification and overall survival prediction in advanced gastric cancer patients based on whole-volume MRI radiomics[J]. J Magn Reson Imaging, 2023, 58(4): 1161-1174. DOI: 10.1002/jmri.28621.
[68]
ZHI H Q, XIANG Y L, CHEN C B, et al. Development and validation of a machine learning-based 18F-fluorodeoxyglucose PET/CT radiomics signature for predicting gastric cancer survival[J/OL]. Cancer Imag, 2024, 24(1): 99 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/39080806/. DOI: 10.1186/s40644-024-00741-4.

PREV Research progress of indicators related to the tumor immune microenvironment of intrahepatic cholangiocarcinoma based on radiomics
NEXT Advances in clinical and MRI research on lymph node metastasis in rectal cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn