Share:
Share this content in WeChat
X
Review
Advances in clinical and MRI research on lymph node metastasis in rectal cancer
LI Diliang  WAN Lijuan  ZHANG Hongmei 

Cite this article as: LI D L, WAN L J, ZHANG H M. Advances in clinical and MRI research on lymph node metastasis in rectal cancer[J]. Chin J Magn Reson Imaging, 2025, 16(7): 185-191. DOI:10.12015/issn.1674-8034.2025.07.030.


[Abstract] Rectal cancer is one of the most common malignant tumors in China, with both its incidence and mortality rates demonstrating a consistent upward trend in recent years. Lymph node metastasis (LNM), as one of the primary metastatic pathways in rectal cancer, is closely associated with disease staging and patient prognosis. Therefore, accurate assessment of lymph node status is critical for guiding clinical management. The current National Comprehensive Cancer Network guidelines recommend MRI for assessing lymph node status in patients with rectal cancer. However, the diagnostic accuracy of conventional MRI morphological features in identifying LNM remains suboptimal and insufficient to meet clinical demands for precision diagnosis and treatment of rectal cancer. Emerging functional MRI techniques and artificial intelligence demonstrate considerable potential in enhancing predictive capabilities for lymph node evaluation, yet a comprehensive review of recent advances in these fields is still lacking. This review systematically examines the metastatic pathways of lymph nodes, conventional and functional MRI techniques, and artificial intelligence applications in lymph node assessment in rectal cancer. It aims to provide readers with insights into current assessment approaches and future directions. We suggest that future studies should prioritize the discovery of novel morphological biomarkers, refinement of functional MRI techniques and artificial intelligence algorithms, standardization of imaging protocols and diagnostic models, and validation through multi-center studies with large-scale rectal cancer MRI databases. These advancements may accelerate the clinical translation of diagnostic tools, ultimately aiding clinicians in achieving precise diagnosis of LNM and tailoring personalized therapeutic strategies for rectal cancer patients.
[Keywords] rectal cancer;lymph node metastasis;magnetic resonance imaging;clinical management;imaging research

LI Diliang   WAN Lijuan   ZHANG Hongmei*  

Department of Diagnostic Radiology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China

Corresponding author: ZHANG H M, E-mail: 13581968865@163.com

Conflicts of interest   None.

Received  2025-04-03
Accepted  2025-06-05
DOI: 10.12015/issn.1674-8034.2025.07.030
Cite this article as: LI D L, WAN L J, ZHANG H M. Advances in clinical and MRI research on lymph node metastasis in rectal cancer[J]. Chin J Magn Reson Imaging, 2025, 16(7): 185-191. DOI:10.12015/issn.1674-8034.2025.07.030.

[1]
HAN B F, ZHENG R S, ZENG H M, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53. DOI: 10.1016/j.jncc.2024.01.006.
[2]
PENG W, QIAO H M, MO L F, et al. Progress in the diagnosis of lymph node metastasis in rectal cancer: A review[J/OL]. Front Oncol, 2023, 13: 1167289 [2025-03-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10374255/. DOI: 10.3389/fonc.2023.1167289.
[3]
BOGVERADZE N, SNAEBJORNSSON P, GROTENHUIS B A, et al. MRI anatomy of the rectum: key concepts important for rectal cancer staging and treatment planning[J/OL]. Insights Imaging, 2023, 14(1): 13 [2025-03-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9849549/. DOI: 10.1186/s13244-022-01348-8.
[4]
QADERI S M, DICKMAN P W, DE WILT J H W, et al. Conditional survival and cure of patients with colon or rectal cancer: a population-based study[J]. J Natl Compr Canc Netw, 2020, 18(9): 1230-1237. DOI: 10.6004/jnccn.2020.7568.
[5]
WO J Y, ANKER C J, ASHMAN J B, et al. Radiation therapy for rectal cancer: executive summary of an ASTRO clinical practice guideline[J]. Pract Radiat Oncol, 2021, 11(1): 13-25. DOI: 10.1016/j.prro.2020.08.004.
[6]
Chinese Watch & Wait Database Research Cooperation Group (CWWD), Colorectal Surgery Group of the Surgery Branch in the Chinese Medical Association (CMA), Colorectal Cancer Physician Specialty Committee of Chinese Medical Doctor Association, et al. Chinese expert consensus on the watch and wait strategy in rectal cancer patients after neoadjuvant treatment(2024 version)[J]. Chin J Gastrointest Surg, 2024(4): 301-315. DOI: 10.3760/cma.j.cn441530-20240227-00075.
[7]
NOGUCHI T, AKIYOSHI T, SAKAMOTO T, et al. Features of lateral pelvic lymph nodes associated with pathological involvement after total neoadjuvant therapy in patients undergoing lateral pelvic lymph node dissection[J]. Dis Colon Rectum, 2025, 68(3): 316-326. DOI: 10.1097/DCR.0000000000003590.
[8]
CHEN L N, JIANG J, JIANG L M, et al. Post-hoc analysis of clinicopathological factors affecting lateral lymph node metastasis based on STELLAR study for rectal cancer[J/OL]. Radiother Oncol, 2024, 200: 110512 [2025-03-24]. https://pubmed.ncbi.nlm.nih.gov/39216825/. DOI: 10.1016/j.radonc.2024.110512.
[9]
LEE T, HORVAT N, GOLLUB M J, et al. Prognostic value of lateral lymph node metastasis in pretreatment MRI for rectal cancer in patients undergoing neoadjuvant chemoradiation followed by surgical resection without lateral lymph node dissection: A systemic review and meta-analysis[J/OL]. Eur J Radiol, 2024, 178: 111601 [2025-03-24]. https://pubmed.ncbi.nlm.nih.gov/38972182/. DOI: 10.1016/j.ejrad.2024.111601.
[10]
OGURA A, KONISHI T, CUNNINGHAM C, et al. Neoadjuvant (chemo)radiotherapy with total mesorectal excision only is not sufficient to prevent lateral local recurrence in enlarged nodes: results of the multicenter lateral node study of patients with low cT3/4 rectal cancer[J]. J Clin Oncol, 2019, 37(1): 33-43. DOI: 10.1200/JCO.18.00032.
[11]
NIU Y, YU S Q, CHEN P, et al. Diagnostic performance of Node-RADS score for mesorectal lymph node metastasis in rectal cancer[J]. Abdom Radiol (NY), 2025, 50(1): 38-48. DOI: 10.1007/s00261-024-04497-0.
[12]
BROUWER N P M, OGUZ ERDOGAN A S, VAN VLIET S, et al. Unraveling the routes to distant metastases in colorectal cancer: Tumor deposits and lymph node metastases as the gateway[J]. Cancer Commun (Lond), 2024, 44(10): 1209-1213. DOI: 10.1002/cac2.12598.
[13]
JI H R, HU C, YANG X H, et al. Lymph node metastasis in cancer progression: molecular mechanisms, clinical significance and therapeutic interventions[J/OL]. Signal Transduct Target Ther, 2023, 8(1): 367 [2025-03-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10522642/. DOI: 10.1038/s41392-023-01576-4.
[14]
BATES D D B, HOMSI M E, CHANG K J, et al. MRI for rectal cancer: staging, mrCRM, EMVI, lymph node staging and post-treatment response[J]. Clin Colorectal Cancer, 2022, 21(1): 10-18. DOI: 10.1016/j.clcc.2021.10.007.
[15]
WANG Z J, LIU Q. Standardization in performing regional lymph node dissection for rectum and sigmoid colon cancer[J]. Chin J Gastrointest Surg, 2022(4): 309-314. DOI: 10.3760/cma.j.cn441530-20220104-00007.
[16]
KAUR H, ERNST R D, RAUCH G M, et al. Nodal drainage pathways in primary rectal cancer: anatomy of regional and distant nodal spread[J]. Abdom Radiol (NY), 2019, 44(11): 3527-3535. DOI: 10.1007/s00261-019-02094-0.
[17]
BRIERLEY J, GOSPODAROWICZ M K, WITTRKIND C. TNM classification of malignant tumours[M]. 8th ed. Chichester, West Sussex, UK & Hoboken, NJ: John Wiley & Sons, Inc, 2017.
[18]
ZHANG W J, ZHANG X Y, SUN Y S. History, controversies and advancements in the diagnosis and treatment of lateral lymph nodemetastasisinlowrectalcancer[J]. Chin J Radiol, 2024, 58(5): 474-478. DOI: 10.3760/cma.j.cn112149-20231017-00299.
[19]
Japanese Society for Cancer of the Colon and Rectum. Japanese classification of colorectal, appendiceal, and anal carcinoma: the 3d English edition [secondary publication[J]. J Anus Rectum Colon, 2019, 3(4): 175-195. DOI: 10.23922/jarc.2019-018.
[20]
Laparoscopic Surgery Committee of the Endoscopist Branch in the Chinese Medical Doctor Association, Laparoscopic Surgery Committee of Colorectal Cancer Committee of Chinese Medical Doctor Association, Colorectal Surgery Group of the Surgery Branch in the Chinese Medical Association, et al. Chinese expert consensus on the diagnosis and treatment for lateral lymph node metastasis of rectal cancer (2024 edition)[J]. Chin J Gastrointest Surg, 2024(1): 1-14. DOI: 10.3760/cma.j.cn441530-20231212-00211.
[21]
BEETS-TAN R G H, LAMBREGTS D M J, MAAS M, et al. Magnetic resonance imaging for clinical management of rectal cancer: Updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting[J]. Eur Radiol, 2018, 28(4): 1465-1475. DOI: 10.1007/s00330-017-5026-2.
[22]
ZHANG Z W, CHEN Y, WEN Z Q, et al. MRI for nodal restaging after neoadjuvant therapy in rectal cancer with histopathologic comparison[J/OL]. Cancer Imaging, 2023, 23(1): 67 [2025-03-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10339540/. DOI: 10.1186/s40644-023-00589-0.
[23]
LANGMAN G, PATEL A, BOWLEY D M. Size and distribution of lymph nodes in rectal cancer resection specimens[J]. Dis Colon Rectum, 2015, 58(4): 406-414. DOI: 10.1097/DCR.0000000000000321.
[24]
RUTEGÅRD M K, BÅTSMAN M, BLOMQVIST L, et al. Evaluation of MRI characterisation of histopathologically matched lymph nodes and other mesorectal nodal structures in rectal cancer[J/OL]. Eur Radiol, 2025 [2025-04-05]. https://pubmed.ncbi.nlm.nih.gov/39838092/. DOI: 10.1007/s00330-025-11361-2.
[25]
ZHANG H M, ZHANG C D, ZHENG Z X, et al. Chemical shift effect predicting lymph node status in rectal cancer using high-resolution MR imaging with node-for-node matched histopathological validation[J]. Eur Radiol, 2017, 27(9): 3845-3855. DOI: 10.1007/s00330-017-4738-7.
[26]
LURZ M, SCHÄFER A O. The Avocado Sign: a novel imaging marker for nodal staging in rectal cancer[J/OL]. Eur Radiol, 2025 [2025-03-24]. https://pubmed.ncbi.nlm.nih.gov/40009088/. DOI: 10.1007/s00330-025-11462-y.
[27]
LI Q Y, YANG D, GUAN Z, et al. Extranodal extension at pretreatment MRI and the prognostic value for patients with rectal cancer[J/OL]. Radiology, 2024, 310(3): e232605 [2025-03-24]. https://pubmed.ncbi.nlm.nih.gov/38530176/. DOI: 10.1148/radiol.232605.
[28]
LEE S, KASSAM Z, BAHETI A D, et al. Rectal cancer lexicon 2023 revised and updated consensus statement from the Society of Abdominal Radiology Colorectal and Anal Cancer Disease-Focused Panel[J]. Abdom Radiol (NY), 2023, 48(9): 2792-2806. DOI: 10.1007/s00261-023-03893-2.
[29]
VAN GEFFEN E M, KUSTERS M. Positive lateral lymph node turned negative after neoadjuvant therapy-surgery or observation [J/OL]. Tech Coloproctol, 2025, 29(1): 53 [2025-03-24]. https://pubmed.ncbi.nlm.nih.gov/39847226/. DOI: 10.1007/s10151-024-03080-5.
[30]
OGURA A, KONISHI T, BEETS G L, et al. Lateral nodal features on restaging magnetic resonance imaging associated with lateral local recurrence in low rectal cancer after neoadjuvant chemoradiotherapy or radiotherapy[J/OL]. JAMA Surg, 2019, 154(9): e192172 [2025-03-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6613303/. DOI: 10.1001/jamasurg.2019.2172.
[31]
KROON H M, MALAKORN S, DUDI-VENKATA N N, et al. Local recurrences in western low rectal cancer patients treated with or without lateral lymph node dissection after neoadjuvant (chemo)radiotherapy: an international multi-centre comparative study[J]. Eur J Surg Oncol, 2021, 47(9): 2441-2449. DOI: 10.1016/j.ejso.2021.06.004.
[32]
HIDA K, NISHIZAKI D, SUMII A, et al. Prognostic impact of lateral pelvic node dissection on the survival of patients in low rectal cancer subgroups based on lymph node size[J]. Ann Surg Oncol, 2021, 28(11): 6179-6188. DOI: 10.1245/s10434-021-10312-7.
[33]
KASAI S, SHIOMI A, SHIMIZU H, et al. Risk factors and development of machine learning diagnostic models for lateral lymph node metastasis in rectal cancer: multicentre study[J/OL]. BJS Open, 2024, 8(4): zrae073 [2025-03-24]. https://pubmed.ncbi.nlm.nih.gov/39016280/. DOI: 10.1093/bjsopen/zrae073.
[34]
ABE T, YASUI M, IMAMURA H, et al. Combination of extramural venous invasion and lateral lymph node size detected with magnetic resonance imaging is a reliable biomarker for lateral lymph node metastasis in patients with rectal cancer[J/OL]. World J Surg Oncol, 2022, 20(1): 5 [2025-03-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8728915/. DOI: 10.1186/s12957-021-02464-3.
[35]
YANG T, LI Y, YE Z, et al. Diffusion weighted imaging of the abdomen and pelvis: recent technical advances and clinical applications[J]. Acad Radiol, 2023, 30(3): 470-482. DOI: 10.1016/j.acra.2022.07.018.
[36]
SUROV A, MEYER H J, PECH M, et al. Apparent diffusion coefficient cannot discriminate metastatic and non-metastatic lymph nodes in rectal cancer: A meta-analysis[J]. Int J Colorectal Dis, 2021, 36(10): 2189-2197. DOI: 10.1007/s00384-021-03986-8.
[37]
LI C L, YIN J D. Radiomics based on T2-weighted imaging and apparent diffusion coefficient images for preoperative evaluation of lymph node metastasis in rectal cancer patients[J/OL]. Front Oncol, 2021, 11: 671354 [2025-03-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8141802/. DOI: 10.3389/fonc.2021.671354.
[38]
YIN J D, SONG L R, LU H C, et al. Prediction of different stages of rectal cancer: Texture analysis based on diffusion-weighted images and apparent diffusion coefficient maps[J]. World J Gastroenterol, 2020, 26(17): 2082-2096. DOI: 10.3748/wjg.v26.i17.2082.
[39]
HAO Y F, ZHENG J Y, LI W Q, et al. Ultra-high b-value DWI in rectal cancer: image quality assessment and regional lymph node prediction based on radiomics[J]. Eur Radiol, 2025, 35(1): 49-60. DOI: 10.1007/s00330-024-10958-3.
[40]
XU H S, ZHAO W Y, GUO W B, et al. Prediction model combining clinical and MR data for diagnosis of lymph node metastasis in patients with rectal cancer[J]. J Magn Reson Imaging, 2021, 53(3): 874-883. DOI: 10.1002/jmri.27369.
[41]
YACHEVA A, DARDANOV D, ZLATAREVA D. The multipurpose usage of diffusion-weighted MRI in rectal cancer[J/OL]. Medicina (Kaunas), 2023, 59(12): 2162 [2025-03-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10744943/. DOI: 10.3390/medicina59122162.
[42]
ZHAO L, LIANG M, YANG Y, et al. Value of multiple models of diffusion-weighted imaging for improving the nodal staging of preoperatively node-negative rectal cancer[J]. Abdom Radiol (NY), 2021, 46(10): 4548-4555. DOI: 10.1007/s00261-021-03125-5.
[43]
WANG Q, YU G H, QIU J F, et al. Application of intravoxel incoherent motion in clinical liver imaging: a literature review[J]. J Magn Reson Imaging, 2024, 60(2): 417-440. DOI: 10.1002/jmri.29086.
[44]
YANG X Y, CHEN Y, WEN Z Q, et al. Non-invasive MR assessment of the microstructure and microcirculation in regional lymph nodes for rectal cancer: a study of intravoxel incoherent motion imaging[J/OL]. Cancer Imaging, 2019, 19(1): 70 [2025-03-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6829929/. DOI: 10.1186/s40644-019-0255-z.
[45]
WANG C, YU J, LU M, et al. Diagnostic efficiency of diffusion sequences and a clinical nomogram for detecting lymph node metastases from rectal cancer[J]. Acad Radiol, 2022, 29(9): 1287-1295. DOI: 10.1016/j.acra.2021.10.009.
[46]
ZHOU M, CHEN M Y, LUO M F, et al. Pathological prognostic factors of rectal cancer based on diffusion-weighted imaging, intravoxel incoherent motion, and diffusion kurtosis imaging[J]. Eur Radiol, 2025, 35(2): 979-988. DOI: 10.1007/s00330-024-11025-7.
[47]
RAJU J, USHADEVI AMMA C, JOHN A. A novel approach for b-value optimization in intravoxel incoherent motion imaging using metaheuristic algorithm[J/OL]. Expert Syst Appl, 2021, 168: 114270 [2025-03-24]. https://www.sciencedirect.com/science/article/abs/pii/S0957417420309805via%3Dihub. DOI: 10.1016/j.eswa.2020.114270.
[48]
SAHA A, GIBBS H, PECK K K, et al. Comprehensive review of the utility of dynamic contrast-enhanced MRI for the diagnosis and treatment assessment of spinal benign and malignant osseous disease[J]. AJNR Am J Neuroradiol, 2025, 46(3): 465-475. DOI: 10.3174/ajnr.A8398.
[49]
YANG X Y, CHEN Y, WEN Z Q, et al. Role of quantitative dynamic contrast-enhanced MRI in evaluating regional lymph nodes with a short-axis diameter of less than 5 mm in rectal cancer[J]. AJR Am J Roentgenol, 2019, 212(1): 77-83. DOI: 10.2214/AJR.18.19866.
[50]
ZHOU M, HUANG H, FAN Y, et al. The application of quantitative perfusion analysis of golden-angle radial sparse parallel MRI and R2 value for predicting pathological prognostic factors in rectal cancer[J]. Clin Radiol, 2024, 79(2): 124-132. DOI: 10.1016/j.crad.2023.10.027.
[51]
XU J Q, ZHONG M, PENG W, et al. Correlation study of functional magnetic resonance index and clinicopathological features of rectal cancer[J]. Abdom Radiol (NY), 2024, 49(7): 2368-2386. DOI: 10.1007/s00261-024-04375-9.
[52]
JAYAPRAKASAM V S, INCE S, SUMAN G, et al. PET/MRI in colorectal and anal cancers: an update[J]. Abdom Radiol (NY), 2023, 48(12): 3558-3583. DOI: 10.1007/s00261-023-03897-y.
[53]
LO H Z, CHOY K T, KONG J C H. FDG-PET/MRI in colorectal cancer care: an updated systematic review[J]. Abdom Radiol (NY), 2025, 50(1): 49-63. DOI: 10.1007/s00261-024-04460-z.
[54]
LIN Y, GAO H P, ZHENG J F, et al. Clinical explorations of [68Ga] Ga-FAPI-04 and [18F] FDG dual-tracer total-body PET/CT and PET/MR imaging[J]. Semin Nucl Med, 2024, 54(6): 904-913. DOI: 10.1053/j.semnuclmed.2024.09.009.
[55]
LI H, LI Z, QIN J, et al. Diagnostic performance of [68Ga] Ga-FAPI-04 PET vs. [18F] FDG PET in detecting lymph node metastasis in digestive system cancers: a head-to-head comparative meta-analysis[J/OL]. Front Med (Lausanne), 2025, 12: 1541461 [2025-03-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11968752/. DOI: 10.3389/fmed.2025.1541461.
[56]
HUANG D L, WU J H, ZHONG H S, et al. 68Ga] Ga-FAPI PET for the evaluation of digestive system tumors: systematic review and meta-analysis[J]. Eur J Nucl Med Mol Imaging, 2023, 50(3): 908-920. DOI: 10.1007/s00259-022-06021-2.
[57]
KÖMEK H, CAN C N, KAPLAN İ, et al. Comparison of [68Ga] Ga-DOTA-FAPI-04 PET/CT and [18F] FDG PET/CT in colorectal cancer[J]. Eur J Nucl Med Mol Imaging, 2022, 49(11): 3898-3909. DOI: 10.1007/s00259-022-05839-0.
[58]
CHEN W C, LIU G Q, CHEN J L, et al. Whole-tumor amide proton transfer-weighted imaging histogram analysis to predict pathological extramural venous invasion in rectal adenocarcinoma: A preliminary study[J]. Eur Radiol, 2023, 33(7): 5159-5171. DOI: 10.1007/s00330-023-09418-1.
[59]
SU H Y, CHAN K W Y. Design chemical exchange saturation transfer contrast agents and nanocarriers for imaging proton exchange in vivo[J]. ACS Nano, 2024, 18(50): 33775-33791. DOI: 10.1021/acsnano.4c05923.
[60]
WEI Q R, YUAN W J, JIA Z Q, et al. Preoperative MR radiomics based on high-resolution T2-weighted images and amide proton transfer-weighted imaging for predicting lymph node metastasis in rectal adenocarcinoma[J]. Abdom Radiol (NY), 2023, 48(2): 458-470. DOI: 10.1007/s00261-022-03731-x.
[61]
ZHANG C X, CHEN J Y, LIU Y F, et al. Amide proton transfer-weighted MRI for assessing rectal adenocarcinoma T-staging and perineural invasion: A prospective study[J]. Eur Radiol, 2025, 35(2): 968-978. DOI: 10.1007/s00330-024-11000-2.
[62]
LIAN S S, LIU H M, MENG T B, et al. Quantitative synthetic MRI for predicting locally advanced rectal cancer response to neoadjuvant chemoradiotherapy[J]. Eur Radiol, 2023, 33(3): 1737-1745. DOI: 10.1007/s00330-022-09191-7.
[63]
ZHAO L, LIANG M, XIE L Z, et al. Prediction of pathological prognostic factors of rectal cancer by relaxation maps from synthetic magnetic resonance imaging[J/OL]. Eur J Radiol, 2021, 138: 109658 [2025-03-24]. https://pubmed.ncbi.nlm.nih.gov/33744506/. DOI: 10.1016/j.ejrad.2021.109658.
[64]
YANG F, LI X L, LI Y J, et al. Histogram analysis of quantitative parameters from synthetic MRI: correlations with prognostic factors in nasopharyngeal carcinoma[J]. Eur Radiol, 2023, 33(8): 5344-5354. DOI: 10.1007/s00330-023-09553-9.
[65]
MENG N, LIU X, ZHOU Y H, et al. Multiparametric 18F-FDG PET/MRI based on restrictive spectrum imaging and amide proton transfer-weighted imaging facilitates the assessment of lymph node metastases in non-small cell lung cancer[J/OL]. Radiol Med, 2025 [2025-03-24]. https://pubmed.ncbi.nlm.nih.gov/40232656/. DOI: 10.1007/s11547-025-01992-2.
[66]
XU Q H, SONG Q L, WANG Y, et al. Amide proton transfer weighted combined with diffusion kurtosis imaging for predicting lymph node metastasis in cervical cancer[J]. Magn Reson Imaging, 2024, 106: 85-90. DOI: 10.1016/j.mri.2023.12.001.
[67]
TRAC N, CHEN Z, OH H S, et al. MRI detection of lymph node metastasis through molecular targeting of C-C chemokine receptor type 2 and monocyte hitchhiking[J]. ACS Nano, 2024, 18(3): 2091-2104. DOI: 10.1021/acsnano.3c09201.
[68]
SI G X, DU Y, TANG P, et al. Correction to: unveiling the next generation of MRI contrast agents: current insights and perspectives on ferumoxytol-enhanced MRI[J/OL]. Natl Sci Rev, 2024, 11(6): nwae156 [2025-03-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11177880/. DOI: 10.1093/nsr/nwae156.
[69]
MAATMAN I T, MAAS M C, YPMA S, et al. High-resolution free-breathing chemical-shift-encoded MRI for characterizing lymph nodes in the upper abdomen[J]. Invest Radiol, 2025, 60(7): 434-443. DOI: 10.1097/rli.0000000000001147.
[70]
STIJNS R C H, PHILIPS B W J, NAGTEGAAL I D, et al. USPIO-enhanced MRI of lymph nodes in rectal cancer: A node-to-node comparison with histopathology[J/OL]. Eur J Radiol, 2021, 138: 109636 [2025-03-24]. https://pubmed.ncbi.nlm.nih.gov/33721766/. DOI: 10.1016/j.ejrad.2021.109636.
[71]
CHEN K, CAI Z Y, CAO Y Z, et al. Kinetically inert manganese (Ⅱ)-based hybrid micellar complexes for magnetic resonance imaging of lymph node metastasis[J/OL]. Regen Biomater, 2023, 10: rbad053 [2025-03-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10244211/. DOI: 10.1093/rb/rbad053.
[72]
INCHINGOLO R, MAINO C, CANNELLA R, et al. Radiomics in colorectal cancer patients[J]. World J Gastroenterol, 2023, 29(19): 2888-2904. DOI: 10.3748/wjg.v29.i19.2888.
[73]
ZHUANG Z X, ZHANG Y, YANG X Y, et al. T2WI-based texture analysis predicts preoperative lymph node metastasis of rectal cancer[J]. Abdom Radiol (NY), 2024, 49(6): 2008-2016. DOI: 10.1007/s00261-024-04209-8.
[74]
NIU Y, YU X P, WEN L, et al. Comparison of preoperative CT- and MRI-based multiparametric radiomics in the prediction of lymph node metastasis in rectal cancer[J/OL]. Front Oncol, 2023, 13: 1230698. DOI: 10.3389/fonc.2023.1230698.
[75]
WEI Q R, CHEN L, HOU X Y, et al. Multiparametric MRI-based radiomic model for predicting lymph node metastasis after neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J/OL]. Insights Imaging, 2024, 15(1): 163 [2025-03-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11208366/. DOI: 10.1186/s13244-024-01726-4.
[76]
LIU X C, YANG Q, ZHANG C Y, et al. Multiregional-based magnetic resonance imaging radiomics combined with clinical data improves efficacy in predicting lymph node metastasis of rectal cancer[J/OL]. Front Oncol, 2021, 10: 585767 [2025-03-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7930475/. DOI: 10.3389/fonc.2020.585767.
[77]
ZHAO W, XU H, ZHAO R, et al. MRI-based radiomics model for preoperative prediction of lateral pelvic lymph node metastasis in locally advanced rectal cancer[J]. Acad Radiol, 2024, 31(7): 2753-2772. DOI: 10.1016/j.acra.2023.07.016.
[78]
YANG M W, YANG M Y, YANG L L, et al. Deep learning for MRI lesion segmentation in rectal cancer[J/OL]. Front Med (Lausanne), 2024, 11: 1394262 [2025-03-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11231084/. DOI: 10.3389/fmed.2024.1394262.
[79]
JIANG X F, ZHAO H Y, SALDANHA O L, et al. An MRI deep learning model predicts outcome in rectal cancer[J/OL]. Radiology, 2023, 307(5): e222223 [2025-03-24]. https://pubmed.ncbi.nlm.nih.gov/37278629/. DOI: 10.1148/radiol.222223.
[80]
BEDRIKOVETSKI S, DUDI-VENKATA N N, KROON H M, et al. Artificial intelligence for pre-operative lymph node staging in colorectal cancer: A systematic review and meta-analysis[J]. BMC Cancer, 2021, 21(1): 1058 [2025-03-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8474828/. DOI: 10.1186/s12885-021-08773-w.
[81]
SUN Y, LU Z X, YANG H J, et al. Prediction of lateral lymph node metastasis in rectal cancer patients based on MRI using clinical, deep transfer learning, radiomic, and fusion models[J/OL]. Front Oncol, 2024, 14: 1433190 [2025-03-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11294238/. DOI: 10.3389/fonc.2024.1433190.
[82]
YANG Y J, HAN K T, XU Z Y, et al. Development and validation of multiparametric MRI-based interpretable deep learning radiomics fusion model for predicting lymph node metastasis and prognosis in rectal cancer: A two-center study[J]. Acad Radiol, 2025, 32(5): 2642-2654. DOI: 10.1016/j.acra.2024.11.045.
[83]
ZHAO X Y, XIE P Y, WANG M M, et al. Deep learning-based fully automated detection and segmentation of lymph nodes on multiparametric-MRI for rectal cancer: A multicentre study[J/OL]. EBioMedicine, 2020, 56: 102780 [2025-03-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7276514/. DOI: 10.1016/j.ebiom.2020.102780.
[84]
LU Y, YU Q Y, GAO Y X, et al. Identification of metastatic lymph nodes in MR imaging with faster region-based convolutional neural networks[J]. Cancer Res, 2018, 78(17): 5135-5143. DOI: 10.1158/0008-5472.CAN-18-0494.
[85]
XIA W, LI D D, HE W G, et al. Multicenter evaluation of a weakly supervised deep learning model for lymph node diagnosis in rectal cancer at MRI[J/OL]. Radiol Artif Intell, 2024, 6(2): e230152 [2025-03-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10982819/. DOI: 10.1148/ryai.230152.
[86]
WAN L J, HU J S, CHEN S, et al. Prediction of lymph node metastasis in stage T1-2 rectal cancers with MRI-based deep learning[J]. Eur Radiol, 2023, 33(5): 3638-3646. DOI: 10.1007/s00330-023-09450-1.
[87]
OZAKI K, KUROSE Y, KAWAI K, et al. Development of a diagnostic artificial intelligence tool for lateral lymph node metastasis in advanced rectal cancer[J/OL]. Dis Colon Rectum, 2023, 66(12): e1246-e1253 [2025-03-24]. https://pubmed.ncbi.nlm.nih.gov/37260284/. DOI: 10.1097/DCR.0000000000002719.

PREV Research progress of radiomics in the diagnosis and treatment of gastric cancer
NEXT Advances in artificial intelligence research in prostate cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn