Share:
Share this content in WeChat
X
Review
Advances in artificial intelligence research in prostate cancer
YE Mengmeng  ZHOU Taohu  GE Yanming  FAN Li 

Cite this article as: YE M M, ZHOU T H, GE Y M, et al. Advances in artificial intelligence research in prostate cancer[J]. Chin J Magn Reson Imaging, 2025, 16(7): 192-201. DOI:10.12015/issn.1674-8034.2025.07.031.


[Abstract] Prostate cancer (PCa) has the second highest incidence of malignant tumors among men worldwide, and its precise diagnosis and treatment decision-making urgently needs more accurate auxiliary tools. The rise of artificial intelligence (AI) technology has brought unprecedented opportunities for early diagnosis and precision treatment of PCa. This paper provides a systematic review of the current state of AI in three core areas of prostate cancer: (1) Diagnosis and prognosis assessment, we review the current status of the application of traditional PCa diagnostic tools and focus on the progress of the application of AI in multimodal imaging technology; (2) Molecular mechanism research, we explore the application model of AI in genomics, proteomics and other high-throughput genomics data, revealing key molecular mechanisms of disease development; (3) Treatment decision optimization, we illustrate the innovative practice of AI in surgical planning and intraoperative navigation, personalized design of targeted treatment protocols, and postoperative dynamic monitoring, highlighting the potential value of AI in improving outcomes and reducing and minimizing the risk of complications. This paper describes clinical-grade PCa-specific AI systems and analyzes their advantages in improving the efficiency and accuracy of diagnosis and treatment. Aiming at the challenges faced by AI in PCa applications, such as single data source, insufficient model generalization ability, "black box" characteristics, and lack of multimodal data standardization, future research should focus on building cross-center, multimodal standardized databases and introducing privacy computing technology applications such as federated learning; developing interpretable AI frameworks to enhance clinical trust; and continuously optimizing algorithmic performance to improve the utility and reliability of models. The purpose of this review is to summarize the latest advances and challenges in the application of AI in the field of PCa, and to provide guidance for future research directions in order to promote the deep integration of AI technology with PCa clinical research and practice.
[Keywords] prostate cancer;artificial intelligence;magnetic resonance imaging;image segmentation;personalized treatment

YE Mengmeng1, 2   ZHOU Taohu2   GE Yanming1, 3   FAN Li2*  

1 Shandong Second Medical University, Weifang 261000, China

2 Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China

3 Medical Imaging Center, Affiliated Hospital of Shandong Second Medical University, Weifang 261000, China

Corresponding author: FAN L, E-mail: fanli0930@163.com

Conflicts of interest   None.

Received  2024-12-18
Accepted  2025-05-07
DOI: 10.12015/issn.1674-8034.2025.07.031
Cite this article as: YE M M, ZHOU T H, GE Y M, et al. Advances in artificial intelligence research in prostate cancer[J]. Chin J Magn Reson Imaging, 2025, 16(7): 192-201. DOI:10.12015/issn.1674-8034.2025.07.031.

[1]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[2]
SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA A Cancer J Clin, 2023, 73(1): 17-48. DOI: 10.3322/caac.21763.
[3]
DIZON D S, KAMAL A H. Cancer statistics 2024: all hands on deck[J]. CA Cancer J Clin, 2024, 74(1): 8-9. DOI: 10.3322/caac.21824.
[4]
SIEGEL R L, KRATZER T B, GIAQUINTO A N, et al. Cancer statistics, 2025[J]. CA A Cancer J Clin, 2025, 75(1): 10-45. DOI: 10.3322/caac.21871.
[5]
LIU J Z, DONG L, ZHU Y J, et al. Prostate cancer treatment-China's perspective[J]. Cancer Lett, 2022, 550: 215927. DOI: 10.1016/j.canlet.2022.215927.
[6]
BARSOUK A, PADALA S A, VAKITI A, et al. Epidemiology, staging and management of prostate cancer[J/OL]. Med Sci (Basel), 2020, 8(3): E28https://pmc.ncbi.nlm.nih.gov/articles/PMC7565452/. DOI: 10.3390/medsci8030028.
[7]
MIAH S, CATTO J. BPH and prostate cancer risk[J]. Indian J Urol, 2014, 30(2): 214-218. DOI: 10.4103/0970-1591.126909.
[8]
SCHLEMMER H P, KRAUSE B J, SCHÜTZ V, et al. Imaging of prostate cancer[J]. Deutsches Ärzteblatt Int, 2021: 713-719. DOI: 10.3238/arztebl.m2021.0309.
[9]
WILLIAMS I S, MCVEY A, PERERA S, et al. Modern paradigms for prostate cancer detection and management[J]. Med J Aust, 2022, 217(8): 424-433. DOI: 10.5694/mja2.51722.
[10]
YANG J H, LI J, XIAO L, et al. 68Ga-PSMA PET/CT-based multivariate model for highly accurate and noninvasive diagnosis of clinically significant prostate cancer in the PSA gray zone[J/OL]. Cancer Imaging, 2023, 23(1): 81 [2024-10-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10476329/. DOI: 10.1186/s40644-023-00562-x.
[11]
VAN DER SLOT M A, HOLLEMANS E, DEN BAKKER M A, et al. Inter-observer variability of cribriform architecture and percent Gleason pattern 4 in prostate cancer: relation to clinical outcome[J]. Virchows Arch, 2021, 478(2): 249-256. DOI: 10.1007/s00428-020-02902-9.
[12]
OERTHER B, NEDELCU A, ENGEL H, et al. Update on PI-RADS version 2.1 diagnostic performance benchmarks for prostate MRI: systematic review and meta-analysis[J/OL]. Radiology, 2024, 312(2): e233337 [2024-10-18]. https://pubmed.ncbi.nlm.nih.gov/39136561/. DOI: 10.1148/radiol.233337.
[13]
MOLIÈRE S, HAMZAOUI D, GRANGER B, et al. Reference standard for the evaluation of automatic segmentation algorithms: Quantification of inter observer variability of manual delineation of prostate contour on MRI[J]. Diagn Interv Imaging, 2024, 105(2): 65-73. DOI: 10.1016/j.diii.2023.08.001.
[14]
PERINCHERI S, LEVI A W, CELLI R, et al. An independent assessment of an artificial intelligence system for prostate cancer detection shows strong diagnostic accuracy[J]. Mod Pathol, 2021, 34(8): 1588-1595. DOI: 10.1038/s41379-021-00794-x.
[15]
SAHNI N R, CARRUS B. Artificial intelligence in U.S. health care delivery[J]. N Engl J Med, 2023, 389(4): 348-358. DOI: 10.1056/nejmra2204673.
[16]
ZHU L X, MOU W M, CHEN R. Can the ChatGPT and other large language models with Internet-connected database solve the questions and concerns of patient with prostate cancer and help democratize medical knowledge [J/OL]. J Transl Med, 2023, 21(1): 269 [2024-10-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10115367/. DOI: 10.1186/s12967-023-04123-5.
[17]
DE ROOIJ M, VAN POPPEL H, BARENTSZ J O. Risk stratification and artificial intelligence in early magnetic resonance imaging-based detection of prostate cancer[J]. Eur Urol Focus, 2022, 8(5): 1187-1191. DOI: 10.1016/j.euf.2021.11.005.
[18]
BAO J, HOU Y, QIN L, et al. High-throughput precision MRI assessment with integrated stack-ensemble deep learning can enhance the preoperative prediction of prostate cancer Gleason grade[J]. Br J Cancer, 2023, 128(7): 1267-1277. DOI: 10.1038/s41416-022-02134-5.
[19]
HOU Y, JIANG K W, WANG L L, et al. Biopsy-free AI-aided precision MRI assessment in prediction of prostate cancer biochemical recurrence[J]. Br J Cancer, 2023, 129(10): 1625-1633. DOI: 10.1038/s41416-023-02441-5.
[20]
GOLDENBERG S L, NIR G, SALCUDEAN S E. A new era: artificial intelligence and machine learning in prostate cancer[J]. Nat Rev Urol, 2019, 16(7): 391-403. DOI: 10.1038/s41585-019-0193-3.
[21]
UDDIN S, KHAN A, HOSSAIN M E, et al. Comparing different supervised machine learning algorithms for disease prediction[J/OL]. BMC Med Inform Decis Mak, 2019, 19(1): 281 [2024-10-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6925840/. DOI: 10.1186/s12911-019-1004-8.
[22]
MARTELIN N, DE WITT B, CHEN B, et al. Development and validation of an imageless machine-learning algorithm for the initial screening of prostate cancer[J]. Prostate, 2024, 84(9): 842-849. DOI: 10.1002/pros.24703.
[23]
MATSUKAWA A, YANAGISAWA T, BEKKU K, et al. Comparing the performance of digital rectal examination and prostate-specific antigen as a screening test for prostate cancer: a systematic review and meta-analysis[J]. Eur Urol Oncol, 2024, 7(4): 697-704. DOI: 10.1016/j.euo.2023.12.005.
[24]
CATALONA W J, SMITH D S, RATLIFF T L, et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer[J]. N Engl J Med, 1991, 324(17): 1156-1161. DOI: 10.1056/NEJM199104253241702.
[25]
MERRIEL S W D, POCOCK L, GILBERT E, et al. Systematic review and meta-analysis of the diagnostic accuracy of prostate-specific antigen (PSA) for the detection of prostate cancer in symptomatic patients[J/OL]. BMC Med, 2022, 20(1): 54 [2024-11-20]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8819971/. DOI: 10.1186/s12916-021-02230-y.
[26]
SNOW P B, SMITH D S, CATALONA W J. Artificial neural networks in the diagnosis and prognosis of prostate cancer: a pilot study[J]. J Urol, 1994, 152(5Pt 2): 1923-1926. DOI: 10.1016/s0022-5347(17)32416-3.
[27]
LIU T, ZHANG X, CHEN R, et al. Development, comparison, and validation of four intelligent, practical machine learning models for patients with prostate-specific antigen in the gray zone[J/OL]. Front Oncol, 2023, 13: 1157384 [2025-04-20]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10285702/. DOI: 10.3389/fonc.2023.1157384.
[28]
HYNDMAN M E, PAPROSKI R J, KINNAIRD A, et al. Development of an effective predictive screening tool for prostate cancer using the ClarityDX machine learning platform[J/OL]. NPJ Digit Med, 2024, 7: 163 [2024-11-20]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11190196/. DOI: 10.1038/s41746-024-01167-9.
[29]
HUYNEN A L, GIESEN R J, DE LA ROSETTE J J, et al. Analysis of ultrasonographic prostate images for the detection of prostatic carcinoma: the automated urologic diagnostic expert system[J]. Ultrasound Med Biol, 1994, 20(1): 1-10. DOI: 10.1016/0301-5629(94)90011-6.
[30]
HUANG T L, LU N H, HUANG Y H, et al. Transfer learning with CNNs for efficient prostate cancer and BPH detection in transrectal ultrasound images[J/OL]. Sci Rep, 2023, 13(1): 21849 [2024-11-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10710441/. DOI: 10.1038/s41598-023-49159-1.
[31]
PRATER J S, RICHARD W D. Segmenting ultrasound images of the prostate using neural networks[J]. Ultrason Imaging, 1992, 14(2): 159-185. DOI: 10.1177/016173469201400205.
[32]
LI Z X, DU W, SHI Y T, et al. A bi-directional segmentation method for prostate ultrasound images under semantic constraints[J/OL]. Sci Rep, 2024, 14(1): 11701 [2024-11-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11634890/. DOI: 10.1038/s41598-024-61238-5.
[33]
JIANG H X, IMRAN M, MURALIDHARAN P, et al. MicroSegNet: a deep learning approach for prostate segmentation on micro-ultrasound images[J/OL]. Comput Med Imaging Graph, 2024, 112: 102326 [2024-11-21]. https://pubmed.ncbi.nlm.nih.gov/38211358/. DOI: 10.1016/j.compmedimag.2024.102326.
[34]
CAMPANELLA G, HANNA M G, GENESLAW L, et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images[J]. Nat Med, 2019, 25(8): 1301-1309. DOI: 10.1038/s41591-019-0508-1.
[35]
BULTEN W, KARTASALO K, CHEN P C, et al. Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge[J]. Nat Med, 2022, 28(1): 154-163. DOI: 10.1038/s41591-021-01620-2.
[36]
XIE W S, REDER N P, KOYUNCU C, et al. Prostate cancer risk stratification via nondestructive 3D pathology with deep learning-assisted gland analysis[J]. Cancer Res, 2022, 82(2): 334-345. DOI: 10.1158/0008-5472.CAN-21-2843.
[37]
SONG A H, WILLIAMS M, WILLIAMSON D F K, et al. Analysis of 3D pathology samples using weakly supervised AI[J]. Cell, 2024, 187(10): 2502-2520. DOI: 10.1016/j.cell.2024.03.035.
[38]
KOREVAAR S, TENNAKOON R, PAGE M, et al. Incidental detection of prostate cancer with computed tomography scans[J/OL]. Sci Rep, 2021, 11: 7956 [2024-11-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8041828/. DOI: 10.1038/s41598-021-86972-y.
[39]
BELUE M J, HARMON S A, YANG D, et al. Deep learning-based detection and classification of bone lesions on staging computed tomography in prostate cancer: a development study[J]. Acad Radiol, 2024, 31(6): 2424-2433. DOI: 10.1016/j.acra.2024.01.009.
[40]
SIDDIQUI M R, ANSBRO B, SHAH P V, et al. Real-world use of MRI for risk stratification prior to prostate biopsy[J]. Prostate Cancer Prostatic Dis, 2023, 26(2): 353-359. DOI: 10.1038/s41391-022-00543-4.
[41]
CHENG X Q, CHEN Y T, XU J S, et al. Development and validation of a predictive model based on clinical and MpMRI findings to reduce additional systematic prostate biopsy[J/OL]. Insights Imaging, 2024, 15(1): 3 [2024-11-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10772021/. DOI: 10.1186/s13244-023-01544-0.
[42]
LABUS S, ALTMANN M M, HUISMAN H, et al. A concurrent, deep learning-based computer-aided detection system for prostate multiparametric MRI: a performance study involving experienced and less-experienced radiologists[J]. Eur Radiol, 2023, 33(1): 64-76. DOI: 10.1007/s00330-022-08978-y.
[43]
LEE Y J, MOON H W, CHOI M H, et al. MRI-based deep learning algorithm for assisting clinically significant prostate cancer detection: a bicenter prospective study[J/OL]. Radiology, 2025, 314(3): e232788 [2025-04-21]. https://pubs.rsna.org/doi/full/10.1148/radiol.232788. DOI: 10.1148/radiol.232788.
[44]
HOU Y, ZHANG Y H, BAO J, et al. Artificial intelligence is a promising prospect for the detection of prostate cancer extracapsular extension with mpMRI: a two-center comparative study[J]. Eur J Nucl Med Mol Imaging, 2021, 48(12): 3805-3816. DOI: 10.1007/s00259-021-05381-5.
[45]
LIN Y, YILMAZ E C, BELUE M J, et al. Evaluation of a cascaded deep learning-based algorithm for prostate lesion detection at biparametric MRI[J/OL]. Radiology, 2024, 311(2): e230750 [2024-11-24]. https://pubmed.ncbi.nlm.nih.gov/38713024/. DOI: 10.1148/radiol.230750.
[46]
ADUBEIRO N, NOGUEIRA M L. Editorial for "detecting adverse pathology of prostate cancer with a deep learning approach based on a 3D swin-transformer model and biparametric MRI: a multicenter retrospective study"[J]. J Magn Reson Imaging, 2024, 59(6): 2113-2114. DOI: 10.1002/jmri.28956.
[47]
COMBES A D, PALMA C A, CALOPEDOS R, et al. PSMA PET-CT in the diagnosis and staging of prostate cancer[J/OL]. Diagnostics (Basel), 2022, 12(11): 2594 [2024-11-25]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9689635/. DOI: 10.3390/diagnostics12112594.
[48]
YI Z L, HU S Q, LIN X F, et al. Machine learning-based prediction of invisible intraprostatic prostate cancer lesions on 68 Ga-PSMA-11 PET/CT in patients with primary prostate cancer[J]. Eur J Nucl Med Mol Imaging, 2022, 49(5): 1523-1534. DOI: 10.1007/s00259-021-05631-6.
[49]
CAPOBIANCO N, SIBILLE L, CHANTADISAI M, et al. Whole-body uptake classification and prostate cancer staging in 68Ga-PSMA-11 PET/CT using dual-tracer learning[J]. Eur J Nucl Med Mol Imaging, 2022, 49(2): 517-526. DOI: 10.1007/s00259-021-05473-2.
[50]
ÖĞÜLMÜŞ F E, ALMALıOĞLU Y, TAMAM M Ö, et al. Integrating PET/CT, radiomics and clinical data: an advanced multi-modal approach for lymph node metastasis prediction in prostate cancer[J/OL]. Comput Biol Med, 2025, 184: 109339 [2024-11-26]. https://pubmed.ncbi.nlm.nih.gov/39522134/. DOI: 10.1016/j.compbiomed.2024.109339.
[51]
GHOLIZADEH N, GREER P B, SIMPSON J, et al. Diagnosis of transition zone prostate cancer by multiparametric MRI: added value of MR spectroscopic imaging with sLASER volume selection[J/OL]. J Biomed Sci, 2021, 28(1): 54 [2025-03-31]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8290561/. DOI: 10.1186/s12929-021-00750-6.
[52]
GRANLUND K L, TEE S S, VARGAS H A, et al. Hyperpolarized MRI of human prostate cancer reveals increased lactate with tumor grade driven by monocarboxylate transporter 1[J]. Cell Metab, 2020, 31(1): 105-114. DOI: 10.1016/j.cmet.2019.08.024.
[53]
ALONGI P, STEFANO A, COMELLI A, et al. Radiomics analysis of 18F-Choline PET/CT in the prediction of disease outcome in high-risk prostate cancer: an explorative study on machine learning feature classification in 94 patients[J]. Eur Radiol, 2021, 31(7): 4595-4605. DOI: 10.1007/s00330-020-07617-8.
[54]
MIRSHAHVALAD S A, EISAZADEH R, SHAHBAZI-AKBARI M, et al. Application of artificial intelligence in oncologic molecular PET-imaging: a narrative review on beyond [18F] F-FDG tracers - part I. PSMA, choline, and DOTA radiotracers[J]. Semin Nucl Med, 2024, 54(1): 171-180. DOI: 10.1053/j.semnuclmed.2023.08.004.
[55]
ZHANG H Y, JI J, LIU Z, et al. Artificial intelligence for the diagnosis of clinically significant prostate cancer based on multimodal data: a multicenter study[J/OL]. BMC Med, 2023, 21(1): 270 [2024-11-27].https://pmc.ncbi.nlm.nih.gov/articles/PMC10367399/. DOI: 10.1186/s12916-023-02964-x.
[56]
MOSES K A, SPRENKLE P C, BAHLER C, et al. NCCN guidelines® insights: prostate cancer early detection, version 1.2023[J]. J Natl Compr Canc Netw, 2023, 21(3): 236-246. DOI: 10.6004/jnccn.2023.0014.
[57]
ESTEVA A, FENG J, VAN DER WAL D, et al. Prostate cancer therapy personalization via multi-modal deep learning on randomized phase Ⅲ clinical trials[J/OL]. NPJ Digit Med, 2022, 5: 71 [2024-11-22].https://pmc.ncbi.nlm.nih.gov/articles/PMC9177850/. DOI: 10.1038/s41746-022-00613-w.
[58]
TWARD J D, HUANG H C, ESTEVA A, et al. Prostate cancer risk stratification in NRG oncology phase III randomized trials using multimodal deep learning with digital histopathology[J/OL]. JCO Precis Oncol, 2024, 8: e2400145 [2024-11-27]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11520341/. DOI: 10.1200/PO.24.00145.
[59]
SPRATT D E, TANG S Y, SUN Y L, et al. Artificial intelligence predictive model for hormone therapy use in prostate cancer[J/OL]. NEJM Evid, 2023, 2(8): EVIDoa2300023 [2024-11-22]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11195914/. DOI: 10.1056/EVIDoa2300023.
[60]
MARVASO G, ISAKSSON L J, ZAFFARONI M, et al. Can we predict pathology without surgery? Weighing the added value of multiparametric MRI and whole prostate radiomics in integrative machine learning models[J]. Eur Radiol, 2024, 34(10): 6241-6253. DOI: 10.1007/s00330-024-10699-3.
[61]
KUMAR-SINHA C, TOMLINS S A, CHINNAIYAN A M. Recurrent gene fusions in prostate cancer[J]. Nat Rev Cancer, 2008, 8(7): 497-511. DOI: 10.1038/nrc2402.
[62]
RAMÍREZ-MENA A, ANDRÉS-LEÓN E, ALVAREZ-CUBERO M J, et al. Explainable artificial intelligence to predict and identify prostate cancer tissue by gene expression[J/OL]. Comput Methods Programs Biomed, 2023, 240: 107719 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/37453366/. DOI: 10.1016/j.cmpb.2023.107719.
[63]
FERNANDEZ-MATEOS J, CRESSWELL G D, TRAHEARN N, et al. Tumor evolution metrics predict recurrence beyond 10 years in locally advanced prostate cancer[J]. Nat Cancer, 2024, 5(9): 1334-1351. DOI: 10.1038/s43018-024-00787-0.
[64]
MUAZZAM A, SPICK M, CEXUS O N F, et al. A novel blood proteomic signature for prostate cancer[J/OL]. Cancers (Basel), 2023, 15(4): 1051 [2024-11-30]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9954127/. DOI: 10.3390/cancers15041051.
[65]
CHENG X, ZHAO W S, ZHU M D, et al. Drug repurposing for cancer treatment through global propagation with a greedy algorithm in a multilayer network[J]. Cancer Biol Med, 2021, 19(1): 74-89. DOI: 10.20892/j.issn.2095-3941.2020.0218.
[66]
ZHANG T T, ZHAO F M, LIN Y H, et al. Integrated analysis of single-cell and bulk transcriptomics develops a robust neuroendocrine cell-intrinsic signature to predict prostate cancer progression[J]. Theranostics, 2024, 14(3): 1065-1080. DOI: 10.7150/thno.92336.
[67]
SAOUD M, GRAU J, RENNERT R, et al. Advancing anticancer drug discovery: leveraging metabolomics and machine learning for mode of action prediction by pattern recognition[J/OL]. Adv Sci, 2024, 11(47): 2404085 [2024-11-30]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11653622/. DOI: 10.1002/advs.202404085.
[68]
DE BACKER P, VAN PRAET C, SIMOENS J, et al. Improving augmented reality through deep learning: real-time instrument delineation in robotic renal surgery[J]. Eur Urol, 2023, 84(1): 86-91. DOI: 10.1016/j.eururo.2023.02.024.
[69]
TRINH L, MINGO S, VANSTRUM E B, et al. Survival analysis using surgeon skill metrics and patient factors to predict urinary continence recovery after robot-assisted radical prostatectomy[J]. Eur Urol Focus, 2022, 8(2): 623-630. DOI: 10.1016/j.euf.2021.04.001.
[70]
VAZZANO J, JOHANSSON D, HU K, et al. Evaluation of a computer-aided detection software for prostate cancer prediction: excellent diagnostic accuracy independent of preanalytical factors[J/OL]. Lab Invest, 2023, 103(12): 100257 [2025-03-31]. https://pubmed.ncbi.nlm.nih.gov/37813279/. DOI: 10.1016/j.labinv.2023.100257.
[71]
SILVA L M DA, PEREIRA E M, SALLES P G, et al. Independent real-world application of a clinical-grade automated prostate cancer detection system[J]. J Pathol, 2021, 254(2): 147-158. DOI: 10.1002/path.5662.
[72]
GOETZE S, SCHÜFFLER P, ATHANASIOU A, et al. Use of MS-GUIDE for identification of protein biomarkers for risk stratification of patients with prostate cancer[J/OL]. Clin Proteomics, 2022, 19(1): 9 [2025-03-31]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9044739/. DOI: 10.1186/s12014-022-09349-x.
[73]
CHEN E, PRAKASH S, JANAPA REDDI V, et al. A framework for integrating artificial intelligence for clinical care with continuous therapeutic monitoring[J]. Nat Biomed Eng, 2023, 9(4): 445-454. DOI: 10.1038/s41551-023-01115-0.
[74]
SHIRZAD M, SALAHVARZI A, RAZZAQ S, et al. Revolutionizing prostate cancer therapy: Artificial intelligence - Based nanocarriers for precision diagnosis and treatment[J/OL]. Crit Rev Oncol Hematol, 2025, 208: 104653 [2025-03-31]. https://pubmed.ncbi.nlm.nih.gov/39923922/. DOI: 10.1016/j.critrevonc.2025.104653.
[75]
WANG J Z, WANG K, YU Y F, et al. Self-improving generative foundation model for synthetic medical image generation and clinical applications[J]. Nat Med, 2024, 31(2): 609-617. DOI: 10.1038/s41591-024-03359-y.
[76]
RAJAGOPAL A, REDEKOP E, KEMISETTI A, et al. Federated learning with research prototypes: application to multi-center MRI-based detection of prostate cancer with diverse histopathology[J]. Acad Radiol, 2023, 30(4): 644-657. DOI: 10.1016/j.acra.2023.02.012.

PREV Advances in clinical and MRI research on lymph node metastasis in rectal cancer
NEXT Research progress of MRI in the evaluation of sacroiliac joint structural lesions in axial spondyloarthritis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn