Share:
Share this content in WeChat
X
Review
Advances in magnetic resonance imaging for the assessment of sarcopenia
WANG Yiou  HUANG Chenxi  ZHANG Xiaodong 

Cite this article as: WANG Y O, HUANG C X, ZHANG X D. Advances in magnetic resonance imaging for the assessment of sarcopenia[J]. Chin J Magn Reson Imaging, 2025, 16(7): 209-214. DOI:10.12015/issn.1674-8034.2025.07.033.


[Abstract] Sarcopenia, a prevalent degenerative syndrome in the elderly population, is characterized by progressive declines in skeletal muscle mass, muscle strength, and physical function. Its pathogenesis involves multiple pathophysiological factors, including disrupted proteostasis, mitochondrial dysfunction, and chronic low-grade inflammation, ultimately leading to impaired physical capacity and loss of independence. Current literature demonstrates that magnetic resonance imaging (MRI), with its advantages of non-invasiveness, high soft-tissue resolution, and multiparametric quantitative analysis capabilities, has emerged as a pivotal imaging modality for investigating sarcopenia pathology and clinical assessment. Utilizing techniques such as basic structural sequences, quantitative mapping techniques, and advanced functional MRI (fMRI) techniques, MRI provides critical insights. Multiple studies confirm that MRI-derived muscle metrics serve as independent predictors for adverse outcomes including frailty and postoperative complications in older adults. However, limitations persist in MRI-based sarcopenia evaluation, notably the lack of standardized protocols and underutilization of advanced fMRI. Future research should prioritize developing integrated multimodal imaging frameworks, combining quantitative MRI with radiomics analysis. This review systematically elaborates on the pathobiology of sarcopenia and provides an in-depth analysis of MRI applications in muscle morphometry, compositional quantification, and functional evaluation, aiming to advance clinical diagnosis and therapeutic strategies.
[Keywords] sarcopenia;disorders of muscles;magnetic resonance imaging;frailty;prognostic assessment

WANG Yiou1   HUANG Chenxi2   ZHANG Xiaodong1*  

1 Department of Medical Imaging, the Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou 510630, China

2 The First Clinical Medical School of Southern Medical University, Guangzhou 510515, China

Corresponding author: ZHANG X D, E-mail: ddautumn@126.com

Conflicts of interest   None.

Received  2025-04-21
Accepted  2025-07-07
DOI: 10.12015/issn.1674-8034.2025.07.033
Cite this article as: WANG Y O, HUANG C X, ZHANG X D. Advances in magnetic resonance imaging for the assessment of sarcopenia[J]. Chin J Magn Reson Imaging, 2025, 16(7): 209-214. DOI:10.12015/issn.1674-8034.2025.07.033.

[1]
CRUZ-JENTOFT A J, BAHAT G, BAUER J, et al. Sarcopenia: revised European consensus on definition and diagnosis[J]. Age Ageing, 2019, 48(1): 16-31. DOI: 10.1093/ageing/afy169.
[2]
ALMOHAISEN N, GITTINS M, TODD C, et al. Prevalence of undernutrition, frailty and sarcopenia in community-dwelling people aged 50 years and above: systematic review and meta-analysis[J/OL]. Nutrients, 2022, 14(8): 1537 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/35458101/. DOI: 10.3390/nu14081537.
[3]
LIU C R, WONG P Y, CHUNG Y L, et al. Deciphering the "obesity paradox" in the elderly: a systematic review and meta-analysis of sarcopenic obesity[J/OL]. Obes Rev, 2023, 24(2): e13534 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/36443946/. DOI: 10.1111/obr.13534.
[4]
LAVALLE S, VALERIO M R, MASIELLO E, et al. Unveiling the intricate dance: how cancer orchestrates muscle wasting and sarcopenia[J]. In Vivo, 2024, 38(4): 1520-1529. DOI: 10.21873/invivo.13602.
[5]
DAMLUJI A A, ALFARAIDHY M, ALHAJRI N, et al. Sarcopenia and cardiovascular diseases[J]. Circulation, 2023, 147(20): 1534-1553. DOI: 10.1161/CIRCULATIONAHA.123.064071.
[6]
GIELEN E, DUPONT J, DEJAEGER M, et al. Sarcopenia, osteoporosis and frailty[J/OL]. Metabolism, 2023, 145: 155638 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/37348597/. DOI: 10.1016/j.metabol.2023.155638.
[7]
SALOM VENDRELL C, GARCÍA TERCERO E, MORO HERNÁNDEZ J B, et al. Sarcopenia as a little-recognized comorbidity of type II diabetes mellitus: A review of the diagnosis and treatment[J/OL]. Nutrients, 2023, 15(19): 4149 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/37836433/. DOI: 10.3390/nu15194149.
[8]
DIALLO T D, ROSPLESZCZ S, FABIAN J, et al. Associations of myosteatosis with disc degeneration: a 3T magnetic resonance imaging study in individuals with impaired glycaemia[J]. J Cachexia Sarcopenia Muscle, 2023, 14(3): 1249-1258. DOI: 10.1002/jcsm.13192.
[9]
HOOIJMANS M T, SCHLAFFKE L, BOLSTERLEE B, et al. Compositional and functional MRI of skeletal muscle: A review[J]. J Magn Reson Imaging, 2024, 60(3): 860-877. DOI: 10.1002/jmri.29091.
[10]
SAYER A A, COOPER R, ARAI H, et al. Sarcopenia[J/OL]. Nat Rev Dis Primers, 2024, 10: 68 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/39300120/. DOI: 10.1038/s41572-024-00550-w.
[11]
MAO Y, YAO Y. The clinical application of bioelectrical impedance analysis[J]. Acta Med Univ Sci Technol Huazhong, 2022, 51(5): 706-711. DOI: 10.3870/j.issn.1672-0741.2022.05.020.
[12]
ANG S W, LIEW J, DHARMARATNAM V M, et al. Diagnostic performance of various radiological modalities in the detection of sarcopenia within Asian populations: a systematic review[J]. Ann Coloproctol, 2025, 41(1): 27-39. DOI: 10.3393/ac.2024.00080.0011.
[13]
WANG X N, LI C M, CHEN M. Opportunities and challenges of magnetic resonance imaging: Achievements and prospects over the past decade in China[J]. Chin J Magn Reson Imag, 2022, 13(10): 1-4, 17. DOI: 10.12015/issn.1674-8034.2022.10.001.
[14]
CAWTHON P M, MANINI T, PATEL S M, et al. Putative cut-points in sarcopenia components and incident adverse health outcomes: an SDOC analysis[J]. J Am Geriatr Soc, 2020, 68(7): 1429-1437. DOI: 10.1111/jgs.16517.
[15]
XU J, WAN C S, KTORIS K, et al. Sarcopenia is associated with mortality in adults: a systematic review and meta-analysis[J]. Gerontology, 2022, 68(4): 361-376. DOI: 10.1159/000517099.
[16]
CRUZ-JENTOFT A J, BAEYENS J P, BAUER J M, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people[J]. Age Ageing, 2010, 39(4): 412-423. DOI: 10.1093/ageing/afq034.
[17]
CHEN L K, WOO J, ASSANTACHAI P, et al. Asian working group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment[J]. J Am Med Dir Assoc, 2020, 21(3): 300-307. DOI: 10.1016/j.jamda.2019.12.012.
[18]
KIRK B, CAWTHON P M, ARAI H, et al. The conceptual definition of sarcopenia: Delphi consensus from the global leadership initiative in sarcopenia (GLIS)[J/OL]. Age Ageing, 2024, 53(3): afae052 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/38520141/. DOI: 10.1093/ageing/afae052.
[19]
LI C W, YU K, SHYH-CHANG N, et al. Pathogenesis of sarcopenia and the relationship with fat mass: descriptive review[J]. J Cachexia Sarcopenia Muscle, 2022, 13(2): 781-794. DOI: 10.1002/jcsm.12901.
[20]
ITO A, HASHIMOTO M, TANIHATA J, et al. Involvement of Parkin-mediated mitophagy in the pathogenesis of chronic obstructive pulmonary disease-related sarcopenia[J]. J Cachexia Sarcopenia Muscle, 2022, 13(3): 1864-1882. DOI: 10.1002/jcsm.12988.
[21]
BENNETT J L, PRATT A G, DODDS R, et al. Rheumatoid sarcopenia: loss of skeletal muscle strength and mass in rheumatoid arthritis[J]. Nat Rev Rheumatol, 2023, 19(4): 239-251. DOI: 10.1038/s41584-023-00921-9.
[22]
ROLLAND Y, DRAY C, VELLAS B, et al. Current and investigational medications for the treatment of sarcopenia[J/OL]. Metabolism, 2023, 149: 155597 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/37348598/. DOI: 10.1016/j.metabol.2023.155597.
[23]
PAPADOPOULOU S K. Sarcopenia: a contemporary health problem among older adult populations[J/OL]. Nutrients, 2020, 12(5): 1293 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/32370051/. DOI: 10.3390/nu12051293.
[24]
GU X C, WANG W H, YANG Y J, et al. The effect of metabolites on mitochondrial functions in the pathogenesis of skeletal muscle aging[J]. Clin Interv Aging, 2022, 17: 1275-1295. DOI: 10.2147/CIA.S376668.
[25]
PRADO C M M, HEYMSFIELD S B. Lean tissue imaging: a new era for nutritional assessment and intervention[J]. JPEN J Parenter Enteral Nutr, 2014, 38(8): 940-953. DOI: 10.1177/0148607114550189.
[26]
MA L W, LIU J, DANG W T. Advances in the different imaging methods in gouty arthritis[J]. Chongqing Med, 2023, 52(17): 2662-2666. DOI: 10.3969/j.issn.1671-8348.2023.17.019.
[27]
WANG Z L, WU Y Q, LIN Y, et al. Research progress of obesity index and chronic kidney disease[J/OL]. Chin J Front Med Sci Electron Version, 2025, 17(1): 6-13. DOI: 10.12037/YXQY.2025.01-02.
[28]
BOHANNON R W, MAGASI S R, BUBELA D J, et al. Grip and knee extension muscle strength reflect a common construct among adults[J]. Muscle Nerve, 2012, 46(4): 555-558. DOI: 10.1002/mus.23350.
[29]
LIU D Q, WANG S J, LIU S, et al. Frontiers in sarcopenia: Advancements in diagnostics, molecular mechanisms, and therapeutic strategies[J/OL]. Mol Aspects Med, 2024, 97: 101270 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/38583268/. DOI: 10.1016/j.mam.2024.101270.
[30]
BHASIN S, TRAVISON T G, MANINI T M, et al. Sarcopenia definition: the position statements of the sarcopenia definition and outcomes consortium[J]. J Am Geriatr Soc, 2020, 68(7): 1410-1418. DOI: 10.1111/jgs.16372.
[31]
JENKINS B M, DIXON L D, KOKESH K J, et al. Skeletal muscle symptoms and quantitative MRI in females with dystrophinopathy[J]. Muscle Nerve, 2024, 70(5): 988-999. DOI: 10.1002/mus.28235.
[32]
SALAFFI F, CAROTTI M, POLISENO A C, et al. Quantification of sarcopenia in patients with rheumatoid arthritis by measuring the cross-sectional area of the thigh muscles with magnetic resonance imaging[J]. Radiol Med, 2023, 128(5): 578-587. DOI: 10.1007/s11547-023-01630-9.
[33]
XU Z Y, YANG D W, LUO J, et al. Diagnosis of sarcopenia using the L3 skeletal muscle index estimated from the L1 skeletal muscle index on MR images in patients with cirrhosis[J]. J Magn Reson Imaging, 2023, 58(5): 1569-1578. DOI: 10.1002/jmri.28690.
[34]
ENGELKE K, CHAUDRY O, GAST L, et al. Magnetic resonance imaging techniques for the quantitative analysis of skeletal muscle: State of the art[J]. J Orthop Translat, 2023, 42: 57-72. DOI: 10.1016/j.jot.2023.07.005.
[35]
GARCIA-DIEZ A I, PORTA-VILARO M, ISERN-KEBSCHULL J, et al. Myosteatosis: diagnostic significance and assessment by imaging approaches[J]. Quant Imaging Med Surg, 2024, 14(11): 7937-7957. DOI: 10.21037/qims-24-365.
[36]
ZHANG W S, FU C, YAN D, et al. Quantification of volumetric thigh and paravertebral muscle fat content: comparison of quantitative Dixon (Q-Dixon) magnetic resonance imaging (MRI) with high-speed T2-corrected multiecho MR spectroscopy[J]. Quant Imaging Med Surg, 2024, 14(7): 4490-4505. DOI: 10.21037/qims-24-127.
[37]
HUANG X C, MA J Y, GAO C, et al. Diffusion-tensor magnetic resonance imaging as a non-invasive assessment of extracellular matrix remodeling in lumbar paravertebral muscles of rats with sarcopenia[J/OL]. BMC Musculoskelet Disord, 2024, 25(1): 540 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/38997743/. DOI: 10.1186/s12891-024-07654-0.
[38]
XU T, GUO Y K, XU H Y, et al. Progressions in clinical application of magnetic resonance imaging in myopathy[J]. Chin J Magn Reson Imag, 2023, 14(7): 192-196, 202. DOI: 10.12015/issn.1674-8034.2023.07.035.
[39]
HUANG X C, HUANG Y L, GUO Y T, et al. An experimental study for quantitative assessment of fatty infiltration and blood flow perfusion in quadriceps muscle of rats using IDEAL-IQ and BOLD-MRI for early diagnosis of sarcopenia[J/OL]. Exp Gerontol, 2023, 183: 112322 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/37929293/. DOI: 10.1016/j.exger.2023.112322.
[40]
XING D, LIU F, GAO Y F, et al. Texture analysis of T1- and T2-weighted images identifies myofiber atrophy and grip strength decline in streptozotocin-induced type 1 diabetic sarcopenia rats[J/OL]. J Orthop Surg Res, 2025, 20(1): 155 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/39934885/. DOI: 10.1186/s13018-025-05556-y.
[41]
KRUMPOLEC P, KLEPOCHOVÁ R, JUST I, et al. Multinuclear MRS at 7T uncovers exercise driven differences in skeletal muscle energy metabolism between young and seniors[J/OL]. Front Physiol, 2020, 11: 644 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/32695010/. DOI: 10.3389/fphys.2020.00644.
[42]
LI J F, WANG Y J, ZHANG X S, et al. Study of the value of MR T2 mapping in the evaluation of peripheral muscle changes in knee osteoarthritis[J]. Chin J Magn Reson Imag, 2023, 14(3): 117-121, 133. DOI: 10.12015/issn.1674-8034.2023.03.020.
[43]
BORDE T, WU M M, RUSCHKE S, et al. Assessing breast density using the chemical-shift encoding-based proton density fat fraction in 3-T MRI[J]. Eur Radiol, 2023, 33(6): 3810-3818. DOI: 10.1007/s00330-022-09341-x.
[44]
QIN C, GOLDBERG O, KAKAR G, et al. MRI fat fraction imaging of nodal and bone metastases in prostate cancer[J]. Eur Radiol, 2023, 33(8): 5851-5855. DOI: 10.1007/s00330-023-09527-x.
[45]
THULUVATH A J, FORSGREN M F, LADNER D P, et al. Utilizing a novel MRI technique to identify adverse muscle composition in end-stage liver disease: A pilot study[J/OL]. Ann Hepatol, 2024, 29(4): 101508 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/38719079/. DOI: 10.1016/j.aohep.2024.101508.
[46]
KOUTOULIDIS V, TERPOS E, PAPANIKOLAOU N, et al. Comparison of MRI features of fat fraction and ADC for early treatment response assessment in participants with multiple myeloma[J]. Radiology, 2022, 304(1): 137-144. DOI: 10.1148/radiol.211388.
[47]
BERRY D B, GALINSKY V L, HUTCHINSON E B, et al. Double pulsed field gradient diffusion MRI to assess skeletal muscle microstructure[J]. Magn Reson Med, 2023, 90(4): 1582-1593. DOI: 10.1002/mrm.29751.
[48]
NAUGHTON N, CAHOON S M, SUTTON B P, et al. Accelerated, physics-inspired inference of skeletal muscle microstructure from diffusion-weighted MRI[J]. IEEE Trans Med Imaging, 2024, 43(11): 3698-3709. DOI: 10.1109/TMI.2024.3397790.
[49]
CAMERON D, REITER D A, ADELNIA F, et al. Age-related changes in human skeletal muscle microstructure and architecture assessed by diffusion-tensor magnetic resonance imaging and their association with muscle strength[J/OL]. Aging Cell, 2023, 22(7): e13851 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/37162031/. DOI: 10.1111/acel.13851.
[50]
SHENG S S, SHAO J B, PENG X H, et al. MRI features and clinical correlation analysis of thigh muscle in children with spinal muscular atrophy[J]. Chin J Magn Reson Imag, 2024, 15(9): 114-119. DOI: 10.12015/ISSN.1674-8034.2024.09.019.
[51]
SHENG J P, JIANG R, DU F Z, et al. Application of magnetic resonance DTI technique in evaluating the effect of postoperative exercise rehabilitation[J/OL]. J Healthc Eng, 2022, 2022: 2385699 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/35356626/. DOI: 10.1155/2022/2385699.

PREV Research progress of MRI in the evaluation of sacroiliac joint structural lesions in axial spondyloarthritis
NEXT Research progress of blood oxygenation level dependent magnetic resonance imaging in assessing tumor hypoxia
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn