Share:
Share this content in WeChat
X
Review
Research progress of blood oxygenation level dependent magnetic resonance imaging in assessing tumor hypoxia
MOU Yanan  ZHANG Jing  PANG Yaxuan  SUN Shihua  YIN Liang 

Cite this article as: MOU Y N, ZHANG J, PANG Y X, et al. Research progress of blood oxygenation level dependent magnetic resonance imaging in assessing tumor hypoxia[J]. Chin J Magn Reson Imaging, 2025, 16(7): 215-220, 226. DOI:10.12015/issn.1674-8034.2025.07.034.


[Abstract] Hypoxia is a critical feature of most solid tumors, which induces aggressive and therapy-resistant tumor phenotypes, leading to rapid tumor progression and poor prognosis. Therefore, accurate assessment of tumor hypoxia holds significant importance for guiding treatment decisions, predicting therapeutic outcomes, and developing targeted therapeutic interventions. Blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) evaluates deoxyhemoglobin content in tissues by quantifying the effective transverse relaxation time (T2*) and effective transverse relaxation rate (R2*), thereby indirectly reflecting tumor oxygenation status. As one of the MRI functional imaging methods for assessing tumor hypoxia, it offers advantages in non-invasive comprehensive assessment of tumor oxygenation and monitoring its dynamic changes. In recent years, the emergence of quantitative BOLD-MRI (qBOLD-MRI) technology has achieved a technological leap from indirect to direct evaluation of tissue oxygenation, enabling more precise capture of tumor oxygen metabolism-related information and further expanding the application prospects of BOLD-MRI. This article comprehensively reviews research advances in quantitative assessment of tumor hypoxia by BOLD-MRI and qBOLD-MRI, explores research prospects and future directions, and aims to provide evidence for developing personalized tumor treatment strategies.
[Keywords] magnetic resonance imaging;blood oxygen level dependent magnetic resonance imaging;quantitative assessment;neoplasms;hypoxia;artificial intelligence

MOU Yanan1   ZHANG Jing1   PANG Yaxuan1   SUN Shihua1   YIN Liang2*  

1 The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China

2 Department of Radiology, the First Hospital of Lanzhou University, Lanzhou 730000, China

Corresponding author: YIN L, E-mail: yinliang_ldyy@163.com

Conflicts of interest   None.

Received  2025-05-14
Accepted  2025-07-07
DOI: 10.12015/issn.1674-8034.2025.07.034
Cite this article as: MOU Y N, ZHANG J, PANG Y X, et al. Research progress of blood oxygenation level dependent magnetic resonance imaging in assessing tumor hypoxia[J]. Chin J Magn Reson Imaging, 2025, 16(7): 215-220, 226. DOI:10.12015/issn.1674-8034.2025.07.034.

[1]
CHEN Z, HAN F F, DU Y, et al. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions[J/OL]. Signal Transduct Target Ther, 2023, 8(1): 70 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/36797231/. DOI: 10.1038/s41392-023-01332-8.
[2]
BECKERS C, PRUSCHY M, VETRUGNO I. Tumor hypoxia and radiotherapy: a major driver of resistance even for novel radiotherapy modalities[J/OL]. Semin Cancer Biol, 2024, 98: 19-30 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/38040401/. DOI: 10.1016/j.semcancer.2023.11.006.
[3]
LIU Z H, LIU X P, ZHANG W, et al. Current advances in modulating tumor hypoxia for enhanced therapeutic efficacy[J/OL]. Acta Biomater, 2024, 176: 1-27 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/38232912/. DOI: 10.1016/j.actbio.2024.01.010.
[4]
CIEPŁA J, SMOLARCZYK R. Tumor hypoxia unveiled: insights into microenvironment, detection tools and emerging therapies[J/OL]. Clin Exp Med, 2024, 24(1): 235 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/39361163/. DOI: 10.1007/s10238-024-01501-1.
[5]
ALENEZI A, ALHAMAD H, ALENEZI A, et al. Hypoxia imaging in lung cancer: a PET-based narrative review for clinicians and researchers[J/OL]. Pharmaceuticals (Basel), 2025, 18(4): 459 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/40283896/. DOI: 10.3390/ph18040459.
[6]
LIU Z L, SUN Y Q, TONG T. Quantitative evaluation of hypoxia in tumor microenvironment by functional magnetic resonance imaging[J]. Radiol Pract, 2023, 38(10): 1234-1241. DOI: 10.13609/j.cnki.1000-0313.2023.10.002.
[7]
MATSUMOTO K I, MITCHELL J B, KRISHNA M C. Multimodal functional imaging for cancer/tumor microenvironments based on MRI, EPRI, and PET[J/OL]. Molecules, 2021, 26(6): 1614 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/33799481/. DOI: 10.3390/molecules26061614.
[8]
SUN H Z, SONG X Y, LU S. Effect of BOLD-fMRI on early renal function in patients with type 2 diabetes mellitu[J]. Chin J Magn Reson Imag, 2023, 14(7): 61-66. DOI: 10.12015/issn.1674-8034.2023.07.011.
[9]
DUAN L S, HUANG H Y, SUN F, et al. Comparing the blood oxygen level-dependent fluctuation power of benign and malignant musculoskeletal tumors using functional magnetic resonance imaging[J/OL]. Front Oncol, 2022, 12: 794555 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/36059651/. DOI: 10.3389/fonc.2022.794555.
[10]
ABDUL-LATIF M, CHOWDHURY A, THARMALINGAM H, et al. E xploratory study of using M agnetic resonance P rognostic I maging markers for R adiotherapy I n C ervix cancer (EMPIRIC): a prospective cohort study protocol[J/OL]. BMJ Open, 2024, 14(4): e077390 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/38637128/. DOI: 10.1136/bmjopen-2023-077390.
[11]
LAOTHAMATAS I, MUBARAK H AL, REDDY A, et al. Multiparametric MRI of solid renal masses: principles and applications of advanced quantitative and functional methods for tumor diagnosis and characterization[J]. J Magn Reson Imaging, 2023, 58(2): 342-359. DOI: 10.1002/jmri.28718.
[12]
ALZAIDI A A, PANEK R, BLOCKLEY N P. Quantitative BOLD (qBOLD) imaging of oxygen metabolism and blood oxygenation in the human body: a scoping review[J]. Magn Reson Med, 2024, 92(5): 1822-1837. DOI: 10.1002/mrm.30165.
[13]
ZHAO Z J, ZHAO J N, CUI J L. The development of research for the assessment of tumor oxygenation by using blood oxygen level dependent MRI[J]. Int J Med Radiol, 2011, 34(4): 367-371. DOI: 10.3784/j.issn.1674-1897.2011.04.Z0414.
[14]
WU Q, LI G M. Research progress of blood oxygen level dependent functional magnetic resonance imaging in tumors[J]. Sichuan J Physiol Sci, 2016, 38(2): 106-108.
[15]
STONE A J, BLOCKLEY N P. Improving quantitative BOLD-based measures of oxygen extraction fraction using hyperoxia BOLD-derived measures of blood volume[J/OL]. Magn Reson Med, 2025 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/40391663/. DOI: 10.1002/mrm.30559.
[16]
TURKBEY B. Can BOLD fMRI demonstrate early response to chemoembolization in HCCs?[J/OL]. Acad Radiol, 2021, 28(Suppl 1): S20-S21 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/33958262/. DOI: 10.1016/j.acra.2021.03.026.
[17]
BREUER K, WEICK S, STRÖHLE S P, et al. Feasibility of 4D T2* quantification in the lung with oxygen gas challenge in patients with non-small cell lung cancer[J/OL]. Phys Med, 2020, 72: 46-51 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/32200297/. DOI: 10.1016/j.ejmp.2020.03.009.
[18]
ZHOU H L, BELZILE O, ZHANG Z, et al. The effect of flow on blood oxygen level dependent (R*2) MRI of orthotopic lung tumors[J]. Magn Reson Med, 2019, 81(6): 3787-3797. DOI: 10.1002/mrm.27661.
[19]
ERAKY A M, BECK R T, TREFFY R W, et al. Role of advanced MR imaging in diagnosis of neurological malignancies: current status and future perspective[J/OL]. J Integr Neurosci, 2023, 22(3): 73 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/37258452/. DOI: 10.31083/j.jin2203073.
[20]
PICCIRILLI E, SESTIERI C, DI CLEMENTE L, et al. The effect of different brain lesions on the reorganization of language functions within the dominant hemisphere assessed with task-based BOLD-fMRI[J]. Radiol Med, 2023, 128(6): 775-783. DOI: 10.1007/s11547-023-01642-5.
[21]
LOLLI V E, COOLEN T, SADEGHI N, et al. BOLD fMRI and DTI fiber tracking for preoperative mapping of eloquent cerebral regions in brain tumor patients: impact on surgical approach and outcome[J]. Neurol Sci, 2023, 44(8): 2903-2914. DOI: 10.1007/s10072-023-06667-2.
[22]
STUMPO V, SEBÖK M, VAN NIFTRIK C H B, et al. Feasibility of glioblastoma tissue response mapping with physiologic BOLD imaging using precise oxygen and carbon dioxide challenge[J]. MAGMA, 2022, 35(1): 29-44. DOI: 10.1007/s10334-021-00980-7.
[23]
SEBÖK M, VAN NIFTRIK C H B, HALTER M, et al. Crossed cerebellar diaschisis in patients with diffuse glioma is associated with impaired supratentorial cerebrovascular reactivity and worse clinical outcome[J]. Cerebellum, 2020, 19(6): 824-832. DOI: 10.1007/s12311-020-01174-y.
[24]
VAN GRINSVEN E E, GUICHELAAR J, PHILIPPENS M E, et al. Hemodynamic imaging parameters in brain metastases patients - Agreement between multi-delay ASL and hypercapnic BOLD[J]. J Cereb Blood Flow Metab, 2023, 43(12): 2072-2084. DOI: 10.1177/0271678X231196989.
[25]
CAI S Q, SHI Z F, ZHOU S H, et al. Cerebrovascular dysregulation in patients with glioma assessed with time-shifted BOLD fMRI[J]. Radiology, 2022, 304(1): 155-163. DOI: 10.1148/radiol.212192.
[26]
AKINWALE O, LI Y, LIU P Y, et al. Blood-oxygenation-level-dependent (BOLD) MRI responses to CO2 and O2 inhalation in brain gliomas[J/OL]. Magn Reson Imaging, 2025, 119: 110364 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/40023408/. DOI: 10.1016/j.mri.2025.110364.
[27]
PETRIDIS P D, HORENSTEIN C I, PEREIRA B, et al. BOLD asynchrony elucidates tumor burden in IDH-mutated gliomas[J]. Neuro Oncol, 2022, 24(1): 78-87. DOI: 10.1093/neuonc/noab154.
[28]
WU P B, CHOW D S, PETRIDIS P D, et al. Asynchrony in peritumoral resting-state blood oxygen level-dependent fMRI predicts meningioma grade and invasion[J]. AJNR Am J Neuroradiol, 2021, 42(7): 1293-1298. DOI: 10.3174/ajnr.A7154.
[29]
ZHI S J, CHEN C, HUANG H L, et al. Hypoxia-inducible factor in breast cancer: role and target for breast cancer treatment[J/OL]. Front Immunol, 2024, 15: 1370800 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/38799423/. DOI: 10.3389/fimmu.2024.1370800.
[30]
YANG D M, ARAI T J, CAMPBELL J W, et al. Oxygen-sensitive MRI assessment of tumor response to hypoxic gas breathing challenge[J/OL]. NMR Biomed, 2019, 32(7): e4101 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/31062902/. DOI: 10.1002/nbm.4101.
[31]
BARTSCH S J, BROŽOVÁ K, EHRET V, et al. Non-contrast-enhanced multiparametric MRI of the hypoxic tumor microenvironment allows molecular subtyping of breast cancer: a pilot study[J/OL]. Cancers (Basel), 2024, 16(2): 375 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/38254864/. DOI: 10.3390/cancers16020375.
[32]
BARTSCH S J, EHRET V, FRISKE J, et al. Hyperoxic BOLD-MRI-based characterization of breast cancer molecular subtypes is independent of the supplied amount of oxygen: a preclinical study[J/OL]. Diagnostics (Basel), 2023, 13(18): 2946 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/37761313/. DOI: 10.3390/diagnostics13182946.
[33]
FUSCO R, GRANATA V, PARIANTE P, et al. Blood oxygenation level dependent magnetic resonance imaging and diffusion weighted MRI imaging for benign and malignant breast cancer discrimination[J/OL]. Magn Reson Imaging, 2021, 75: 51-59 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/33080334/. DOI: 10.1016/j.mri.2020.10.008.
[34]
LI B S, XU A H, HUANG Y R, et al. Oxygen-challenge blood oxygen level-dependent magnetic resonance imaging for evaluation of early change of hepatocellular carcinoma to chemoembolization: a feasibility study[J/OL]. Acad Radiol, 2021, 28(Suppl 1): S13-S19 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/32747180/. DOI: 10.1016/j.acra.2020.06.021.
[35]
GORDON A C, WHITE S B, GATES V L, et al. Yttrium-90 radioembolization and tumor hypoxia: gas-challenge BOLD imaging in the VX2 rabbit model of hepatocellular carcinoma[J]. Acad Radiol, 2021, 28(6): 849-858. DOI: 10.1016/j.acra.2020.04.012.
[36]
LIU Z Y, LU C. Application of artificial intelligence in imaging for tumor diagnosis and treatment[J]. Int J Med Radiol, 2024, 47(3): 257-259. DOI: 10.19300/j.2024.S21528.
[37]
PAN L, CHEN M, SUN J, et al. Prediction of Fuhrman grade of renal clear cell carcinoma by multimodal MRI radiomics: a retrospective study[J/OL]. Clin Radiol, 2024, 79(2): e273-e281 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/38065776/. DOI: 10.1016/j.crad.2023.11.006.
[38]
DENG Y L, PAN L, XING W, et al. Application of BOLD-MRI-based radiomics in differentiating malignant from benign renal tumors[J]. J Cent South Univ Med Sci, 2021, 46(9): 1010-1017. DOI: 10.11817/j.issn.1672-7347.2021.200827.
[39]
LIANG J Y, CHENG Q Q, HUANG J X, et al. Monitoring tumour microenvironment changes during anti-angiogenesis therapy using functional MRI[J]. Angiogenesis, 2019, 22(3): 457-470. DOI: 10.1007/s10456-019-09670-4.
[40]
XU X, MA M J, YE K L, et al. Magnetic resonance imaging-based approaches for detecting the efficacy of combining therapy following VEGFR-2 and PD-1 blockade in a colon cancer model[J/OL]. J Transl Med, 2024, 22(1): 198 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/38395884/. DOI: 10.1186/s12967-024-04975-5.
[41]
YIN L, ZHUANG X, LI J L. The value of magnetic resonance blood oxygen level-dependent imaging in evaluating the efficacy of advanced cervical cancer combined with radiotherapy and chemotherapy[J]. Acta Radiol, 2023, 64(4): 1668-1675. DOI: 10.1177/02841851221130302.
[42]
XU X H, CHEN M, ZHANG J, et al. Can the apparent transverse relaxation rate (R2*) evaluate the efficacy of concurrent chemoradiotherapy in locally advanced nasopharyngeal carcinoma? a preliminary experience[J/OL]. BMC Med Imaging, 2023, 23(1): 69 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/37264331/. DOI: 10.1186/s12880-023-01029-y.
[43]
ZHENG H H, ZHANG H L, ZHU Y, et al. Value of blood oxygenation level-dependent magnetic resonance imaging in early evaluation of the response and prognosis of esophageal squamous cell carcinoma treated with definitive chemoradiotherapy: a preliminary study[J/OL]. BMC Med Imaging, 2024, 24(1): 18 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/38216885/. DOI: 10.1186/s12880-024-01193-9.
[44]
KIM C H, LEE J H, LEE J W, et al. Introducing a new biomarker named R2*-BOLD-MRI parameter to assess treatment response in osteosarcoma[J]. J Magn Reson Imaging, 2022, 56(2): 538-546. DOI: 10.1002/jmri.28023.
[45]
WANG Y C, SHEN Y Q, HU X M, et al. Application of R2* and apparent diffusion coefficient in estimating tumor grade and T category of bladder cancer[J]. AJR Am J Roentgenol, 2020, 214(2): 383-389. DOI: 10.2214/AJR.19.21668.
[46]
KIM Y, PARK J J, KIM C K. Blood oxygenation level-dependent MRI at 3T for differentiating prostate cancer from benign tissue: a preliminary experience[J/OL]. Br J Radiol, 2022, 95(1131): 20210461 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/34235962/. DOI: 10.1259/bjr.20210461.
[47]
YABLONSKIY D A, HAACKE E M. Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime[J]. Magn Reson Med, 1994, 32(6): 749-763. DOI: 10.1002/mrm.1910320610.
[48]
YANG A C, ZHUANG H W, DU L, et al. Evaluation of whole-brain oxygen metabolism in Alzheimer's disease using QSM and quantitative BOLD[J/OL]. Neuroimage, 2023, 282: 120381 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/37734476/. DOI: 10.1016/j.neuroimage.2023.120381.
[49]
LEE H, XU J, FERNANDEZ-SEARA M A, et al. Validation of a new 3D quantitative BOLD based cerebral oxygen extraction mapping[J]. J Cereb Blood Flow Metab, 2024, 44(7): 1184-1198. DOI: 10.1177/0271678X231220332.
[50]
WANG D D, CHEN J, YING Y W, et al. Assessment of hypoxia and its dynamic evolution in glioblastoma via qBOLD MRI: a comparative study with metformin treatment[J/OL]. Eur Radiol Exp, 2024, 8(1): 134 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/39621211/. DOI: 10.1186/s41747-024-00533-2.
[51]
ARZANFOROOSH F, BERMAN A J L, SMITS M, et al. Streamlined quantitative BOLD for detecting visual stimulus-induced changes in oxygen extraction fraction in healthy participants: toward clinical application in human glioma[J]. MAGMA, 2023, 36(6): 975-984. DOI: 10.1007/s10334-023-01110-1.
[52]
MARALANI P J, DAS S, MAINPRIZE T, et al. Hypoxia detection in infiltrative astrocytoma: ferumoxytol-based quantitative BOLD MRI with intraoperative and histologic validation[J]. Radiology, 2018, 288(3): 821-829. DOI: 10.1148/radiol.2018172601.
[53]
STADLBAUER A, MOURIDSEN K, DOERFLER A, et al. Recurrence of glioblastoma is associated with elevated microvascular transit time heterogeneity and increased hypoxia[J]. J Cereb Blood Flow Metab, 2018, 38(3): 422-432. DOI: 10.1177/0271678X17694905.
[54]
STADLBAUER A, ZIMMERMANN M, DOERFLER A, et al. Intratumoral heterogeneity of oxygen metabolism and neovascularization uncovers 2 survival-relevant subgroups of IDH1 wild-type glioblastoma[J]. Neuro Oncol, 2018, 20(11): 1536-1546. DOI: 10.1093/neuonc/noy066.
[55]
STADLBAUER A, ZIMMERMANN M, BENNANI-BAITI B, et al. Development of a non-invasive assessment of hypoxia and neovascularization with magnetic resonance imaging in benign and malignant breast tumors: initial results[J]. Mol Imaging Biol, 2019, 21(4): 758-770. DOI: 10.1007/s11307-018-1298-4.
[56]
BENNANI-BAITI B, PINKER K, ZIMMERMANN M, et al. Non-invasive assessment of hypoxia and neovascularization with MRI for identification of aggressive breast cancer[J/OL]. Cancers (Basel), 2020, 12(8): 2024 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/32721996/. DOI: 10.3390/cancers12082024.

PREV Advances in magnetic resonance imaging for the assessment of sarcopenia
NEXT Clinical application progress of magnetic resonance golden angle radial sparse parallel technique
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn