Share:
Share this content in WeChat
X
Review
Clinical application progress of magnetic resonance golden angle radial sparse parallel technique
SHI Xinying  LI Yuxuan  DONG Ziyan  ZHENG Wenjing  LIU Xiaoqin  LUO Xin  CAO Jinfeng 

Cite this article as: SHI X Y, LI Y X, DONG Z Y, et al. Clinical application progress of magnetic resonance golden angle radial sparse parallel technique[J]. Chin J Magn Reson Imaging, 2025, 16(7): 221-226. DOI:10.12015/issn.1674-8034.2025.07.035.


[Abstract] The golden-angle radial sparse parallel (GRASP) technique is a new dynamic contrast-enhanced magnetic resonance imaging technology that integrates compressed sensing, parallel imaging, and golden-angle radial sampling. It can accelerate imaging speed while obtaining high spatial resolution image information. Moreover, it allows for post-reconstruction processing of the acquired raw data to reduce the impact of artifacts caused by respiratory motion, thereby ensuring image quality. The GRASP technique has been preliminarily applied in cardiovascular imaging, abdominal dynamic imaging, and tumor diagnosis, achieving higher diagnostic accuracy compared with traditional imaging methods. This article will provide a systematic review of the basic principles of GRASP technology, its clinical application progress in multiple areas such as the head and neck, cardiovascular system, chest and abdomen, and motor system, and explore its latest expanded technologies. The aim is to provide a new perspective for the future improvement of this technology and promote its clinical application, providing reference for clinical diagnosis and treatment plans of diseases.
[Keywords] golden angle radial sparse parallel technology;magnetic resonance imaging;dynamic contrast-enhanced magnetic resonance imaging;diagnostic imaging;clinical application

SHI Xinying1, 2   LI Yuxuan2, 3   DONG Ziyan2, 3   ZHENG Wenjing1, 2   LIU Xiaoqin1, 2   LUO Xin2   CAO Jinfeng2*  

1 School of Medical Imaging, Binzhou Medical University, Yantai 264003, China

2 Department of Radiology, Zibo Central Hospital, Zibo 255000, China

3 School of Medical Imaging, Shandong Second Medical University, Weifang 261053, China

Corresponding author: CAO J F, E-mail: cjf19810629@163.com

Conflicts of interest   None.

Received  2025-05-13
Accepted  2025-07-06
DOI: 10.12015/issn.1674-8034.2025.07.035
Cite this article as: SHI X Y, LI Y X, DONG Z Y, et al. Clinical application progress of magnetic resonance golden angle radial sparse parallel technique[J]. Chin J Magn Reson Imaging, 2025, 16(7): 221-226. DOI:10.12015/issn.1674-8034.2025.07.035.

[1]
FENG L, GRIMM R, BLOCK K T, et al. Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI[J]. Magn Reson Med, 2014, 72(3): 707-717. DOI: 10.1002/mrm.24980.
[2]
LI X, HUANG W, HOLMES J H. Dynamic contrast-enhanced (DCE) MRI[J]. Magn Reson Imaging Clin N Am, 2024, 32(1): 47-61. DOI: 10.1016/j.mric.2023.09.001.
[3]
GOLDMAN-YASSEN A E, RAZ E, BORJA M J, et al. Highly time-resolved 4D MR angiography using golden-angle radial sparse parallel (GRASP) MRI[J/OL]. Sci Rep, 2022, 12(1): 15099 [2025-05-12]. https://pubmed.ncbi.nlm.nih.gov/36064872/. DOI: 10.1038/s41598-022-18191-y.
[4]
ERAKY A M, BECK R T, TREFFY R W, et al. Role of advanced MR imaging in diagnosis of neurological malignancies: current status and future perspective[J/OL]. J Integr Neurosci, 2023, 22(3): 73 [2025-05-12]. https://pubmed.ncbi.nlm.nih.gov/37258452/. DOI: 10.31083/j.jin2203073.
[5]
NAJEEB F, AMJAD K, ULLAH I, et al. SC-GROG followed by L+S reconstruction with multiple sparsity constraints for accelerated Golden-angle-radial DCE-MRI[J/OL]. PLoS One, 2025, 20(2): e0318102 [2025-05-12]. https://pubmed.ncbi.nlm.nih.gov/39951435/. DOI: 10.1371/journal.pone.0318102.
[6]
HUBER S, BALCACER DE LA CRUZ P, MAHAN M, et al. Comparison of image quality of subtracted and nonsubtracted breath hold VIBE and free breathing GRASP in the evaluation of renal masses[J/OL]. Clin Imaging, 2021, 74: 15-18 [2025-05-12]. https://pubmed.ncbi.nlm.nih.gov/33421698/. DOI: 10.1016/j.clinimag.2020.12.027.
[7]
CHEN J J, HUANG C C, SHANBHOGUE K, et al. DCE-MRI of the liver with sub-second temporal resolution using GRASP-Pro with navi-stack-of-stars sampling[J/OL]. NMR Biomed, 2024, 37(12): e5262 [2025-05-12]. https://pubmed.ncbi.nlm.nih.gov/39323100/. DOI: 10.1002/nbm.5262.
[8]
LEE Y, YOON S, PARK S H, et al. Advanced abdominal MRI techniques and problem-solving strategies[J]. J Korean Soc Radiol, 2024, 85(2): 345-362. DOI: 10.3348/jksr.2023.0067.
[9]
FENG L, BENKERT T, BLOCK K T, et al. Compressed sensing for body MRI[J]. J Magn Reson Imaging, 2017, 45(4): 966-987. DOI: 10.1002/jmri.25547.
[10]
LI S, WANG X C. Clinical advancements in the application of compressed sensing techniques in magnetic resonance imaging[J]. Chin J Magn Reson Imag, 2023, 14(12): 198-202. DOI: 10.12015/issn.1674-8034.2023.12.036.
[11]
UEDA T, OHNO Y, YAMAMOTO K, et al. Compressed sensing and deep learning reconstruction for women's pelvic MRI denoising: Utility for improving image quality and examination time in routine clinical practice[J/OL]. Eur J Radiol, 2021, 134: 109430 [2025-05-12]. https://pubmed.ncbi.nlm.nih.gov/33276249/. DOI: 10.1016/j.ejrad.2020.109430.
[12]
GAO Z F, GUO Y F, ZHANG J J, et al. Hierarchical perception adversarial learning framework for compressed sensing MRI[J]. IEEE Trans Med Imaging, 2023, 42(6): 1859-1874. DOI: 10.1109/TMI.2023.3240862.
[13]
DESHMANE A, GULANI V, GRISWOLD M A, et al. Parallel MR imaging[J]. J Magn Reson Imaging, 2012, 36(1): 55-72. DOI: 10.1002/jmri.23639.
[14]
CHEN L H, ZENG X C, JI B, et al. Improving dynamic contrast-enhanced MRI of the lung using motion-weighted sparse reconstruction: Initial experiences in patients[J/OL]. Magn Reson Imaging, 2020, 68: 36-44 [2025-05-12]. https://pubmed.ncbi.nlm.nih.gov/32001328/. DOI: 10.1016/j.mri.2020.01.013.
[15]
SCHULZE-ZACHAU V, WINKEL D J, KAUL F, et al. Estimation of differential renal function on routine abdominal imaging employing compressed-sensed contrast-enhanced MR: a feasibility study referenced against dynamic renal scintigraphy in patients with deteriorating renal retention parameters[J]. Abdom Radiol (NY), 2023, 48(4): 1329-1339. DOI: 10.1007/s00261-023-03823-2.
[16]
FENG L. Golden-angle radial MRI: basics, advances, and applications[J]. J Magn Reson Imaging, 2022, 56(1): 45-62. DOI: 10.1002/jmri.28187.
[17]
JAFARI R, DO R K G, LAGRATTA M D, et al. GRASPNET: Fast spatiotemporal deep learning reconstruction of golden-angle radial data for free-breathing dynamic contrast-enhanced magnetic resonance imaging[J/OL]. NMR Biomed, 2023, 36(3): e4861 [2025-05-12]. https://pubmed.ncbi.nlm.nih.gov/36305619/. DOI: 10.1002/nbm.4861.
[18]
LEE M D, YOUNG M G, FATTERPEKAR G M. "The pituitary within GRASP" -golden-angle radial sparse parallel dynamic MRI technique and applications to the pituitary gland[J]. Semin Ultrasound CT MRI, 2021, 42(3): 307-315. DOI: 10.1053/j.sult.2021.04.007.
[19]
HUR S J, CHOI Y, YOON J, et al. Intraindividual comparison between the contrast-enhanced golden-angle radial sparse parallel sequence and the conventional fat-suppressed contrast-enhanced T1-weighted spin-echo sequence for head and neck MRI[J]. AJNR Am J Neuroradiol, 2021, 42(11): 2009-2015. DOI: 10.3174/ajnr.A7285.
[20]
TOMPPERT A, WUEST W, WIESMUELLER M, et al. Achieving high spatial and temporal resolution with perfusion MRI in the head and neck region using golden-angle radial sampling[J]. Eur Radiol, 2021, 31(4): 2263-2271. DOI: 10.1007/s00330-020-07263-0.
[21]
HAINC N, STIPPICH C, REINHARDT J, et al. Golden-angle radial sparse parallel (GRASP) MRI in clinical routine detection of pituitary microadenomas: First experience and feasibility[J/OL]. Magn Reson Imaging, 2019, 60: 38-43 [2025-05-12]. https://pubmed.ncbi.nlm.nih.gov/30928387/. DOI: 10.1016/j.mri.2019.03.015.
[22]
SEN R, SEN C, PACK J, et al. Role of high-resolution dynamic contrast-enhanced MRI with golden-angle radial sparse parallel reconstruction to identify the normal pituitary gland in patients with macroadenomas[J]. AJNR Am J Neuroradiol, 2017, 38(6): 1117-1121. DOI: 10.3174/ajnr.A5244.
[23]
MOGEN J L, BLOCK K T, BANSAL N K, et al. Dynamic contrast-enhanced MRI to differentiate parotid neoplasms using golden-angle radial sparse parallel imaging[J]. AJNR Am J Neuroradiol, 2019, 40(6): 1029-1036. DOI: 10.3174/ajnr.A6055.
[24]
PIRES A, NAYAK G, ZAN E, et al. Differentiation of jugular foramen paragangliomas versus schwannomas using golden-angle radial sparse parallel dynamic contrast-enhanced MRI[J]. AJNR Am J Neuroradiol, 2021, 42(10): 1847-1852. DOI: 10.3174/ajnr.A7243.
[25]
ALMANSOUR H, MUSTAFI M, LESCAN M, et al. Golden-angle radial sparse parallel (GRASP) magnetic resonance angiography (MRA) for endoleak evaluation after endovascular repair of the aorta: a prospective comparison to conventional time-resolved MRA[J]. Quant Imaging Med Surg, 2024, 14(10): 7420-7432. DOI: 10.21037/qims-24-1130.
[26]
CALASTRA C G, KLEBAN E, HELFENSTEIN F N, et al. Dynamic contrast-enhanced MRA of the aorta using a Golden-angle RAdial Sparse Parallel (GRASP) sequence: comparison with conventional time-resolved Cartesian MRA (TWIST)[J]. Int J Cardiovasc Imaging, 2024, 40(12): 2523-2534. DOI: 10.1007/s10554-024-03259-9.
[27]
MENG Y, LEE M D, BERGER A, et al. Understanding permeability changes in vestibular schwannomas as part of the dynamic response to radiosurgery using golden-angle radial sparse parallel imaging: a retrospective study[J]. Neurosurgery, 2024, 97(1): 157-165. DOI: 10.1227/neu.0000000000003288.
[28]
CHEN L H, LIU D H, ZHANG J Q, et al. Free-breathing dynamic contrast-enhanced MRI for assessment of pulmonary lesions using golden-angle radial sparse parallel imaging[J]. J Magn Reson Imaging, 2018, 48(2): 459-468. DOI: 10.1002/jmri.25977.
[29]
FAN L, HONG K, ALLEN B D, et al. Ultra-rapid, free-breathing, real-time cardiac cine MRI using GRASP amplified with view sharing and KWIC filtering[J/OL]. Radiol Cardiothorac Imaging, 2024, 6(1): e230107 [2025-05-12]. https://pubmed.ncbi.nlm.nih.gov/38358330/. DOI: 10.1148/ryct.230107.
[30]
YANG H L, HONG K, BARABOO J J, et al. GRASP reconstruction amplified with view-sharing and KWIC filtering reduces underestimation of peak velocity in highly-accelerated real-time phase-contrast MRI: a preliminary evaluation in pediatric patients with congenital heart disease[J]. Magn Reson Med, 2024, 91(5): 1965-1977. DOI: 10.1002/mrm.29974.
[31]
NISSAN N, ANABY D, MAHAMEED G, et al. Ultrafast DCE-MRI for discriminating pregnancy-associated breast cancer lesions from lactation related background parenchymal enhancement[J]. Eur Radiol, 2023, 33(11): 8122-8131. DOI: 10.1007/s00330-023-09805-8.
[32]
HEACOCK L, GAO Y M, HELLER S L, et al. Comparison of conventional DCE-MRI and a novel golden-angle radial multicoil compressed sensing method for the evaluation of breast lesion conspicuity[J]. J Magn Reson Imaging, 2017, 45(6): 1746-1752. DOI: 10.1002/jmri.25530.
[33]
OYAMA K, KURASHINA M, ICHINOHE F, et al. Effect of the relationship between respiratory interval and temporal resolution on image quality in free-breathing abdominal MR imaging[J/OL]. Magn Reson Med Sci, 2024 [2025-05-12]. https://pubmed.ncbi.nlm.nih.gov/38763758/. DOI: 10.2463/mrms.mp.2023-0120.
[34]
PAN J Y, SHAO X, LIU H, et al. Image quality optimization: dynamic contrast-enhanced MRI of the abdomen at 3T using a continuously acquired radial golden-angle compressed sensing acquisition[J]. Abdom Radiol (NY), 2024, 49(2): 399-405. DOI: 10.1007/s00261-023-04035-4.
[35]
YOON J H, LEE J M, YU M H, et al. Simultaneous evaluation of perfusion and morphology using GRASP MRI in hepatic fibrosis[J]. Eur Radiol, 2022, 32(1): 34-45. DOI: 10.1007/s00330-021-08087-2.
[36]
WEISS J, RUFF C, GROSSE U, et al. Assessment of hepatic perfusion using GRASP MRI: bringing liver MRI on a new level[J]. Invest Radiol, 2019, 54(12): 737-743. DOI: 10.1097/RLI.0000000000000586.
[37]
FAN Y Y, CHEN M N, HUANG H Y, et al. Predicting lymphovascular invasion in rectal cancer: evaluating the performance of golden-angle radial sparse parallel MRI for rectal perfusion assessment[J/OL]. Sci Rep, 2023, 13(1): 8453 [2025-05-12]. https://pubmed.ncbi.nlm.nih.gov/37231115/. DOI: 10.1038/s41598-023-35763-8.
[38]
ZHOU M, HUANG H Y, FAN Y Y, et al. Golden-angle radial sparse parallel magnetic resonance imaging of rectal perfusion: utility in the diagnosis of poorly differentiated rectal cancer[J]. Quant Imaging Med Surg, 2023, 13(8): 4826-4838. DOI: 10.21037/qims-22-1244.
[39]
ZHOU M, HUANG H, FAN Y, et al. The application of quantitative perfusion analysis of golden-angle radial sparse parallel MRI and R2 value for predicting pathological prognostic factors in rectal cancer[J]. Clin Radiol, 2024, 79(2): 124-132. DOI: 10.1016/j.crad.2023.10.027.
[40]
ZHOU M, HUANG H Y, GONG T, et al. The application of the golden-angle radial sparse parallel technique in T restaging of locally advanced rectal cancer after neoadjuvant chemoradiotherapy[J]. Abdom Radiol (NY), 2024, 49(8): 2960-2970. DOI: 10.1007/s00261-024-04400-x.
[41]
PAN Y N, GU M Y, MAO Q L, et al. Value of perfusion parameters from golden-angle radial sparse parallel dynamic contrast-enhanced magnetic resonance imaging in predicting pathological complete response after neoadjuvant chemoradiotherapy for locally advanced rectal cancer[J]. Diagn Interv Radiol, 2024, 30(4): 228-235. DOI: 10.4274/dir.2024.232460.
[42]
UENO Y, SOFUE K, TAMADA T, et al. Comparison of golden-angle radial sparse parallel (GRASP) and conventional Cartesian sampling in 3D dynamic contrast-enhanced MRI for bladder cancer: a preliminary study[J]. Jpn J Radiol, 2024, 42(12): 1469-1478. DOI: 10.1007/s11604-024-01637-w.
[43]
YIN X Q, RUAN X Z, ZHU Y M, et al. Prediction of peritoneal free cancer cells in gastric cancer patients by golden-angle radial sampling dynamic contrast-enhanced magnetic resonance imaging[J]. J Zhejiang Univ Sci B, 2024, 25(7): 617-627. DOI: 10.1631/jzus.B2300929.
[44]
WANG Z G, YANG F L, LIU C Y, et al. Predicting intraoperative hemorrhage during curettage treatment of cesarean scar pregnancy using free-breathing GRASP DCE-MRI[J/OL]. BMC Pregnancy Childbirth, 2024, 24(1): 22 [2025-05-12]. https://pubmed.ncbi.nlm.nih.gov/38172701/. DOI: 10.1186/s12884-023-06188-y.
[45]
MENON R G, ZIBETTI M V W, PENDOLA M, et al. Measurement of three-dimensional internal dynamic strains in the intervertebral disc of the lumbar spine with mechanical loading and golden-angle radial sparse parallel-magnetic resonance imaging[J]. J Magn Reson Imaging, 2021, 54(2): 486-496. DOI: 10.1002/jmri.27591.
[46]
MENON R G, DE MOURA H L, KIJOWSKI R, et al. Age and gender differences in lumbar intervertebral disk strain using mechanical loading magnetic resonance imaging[J/OL]. NMR Biomed, 2023, 36(11): e4999 [2025-05-12]. https://pubmed.ncbi.nlm.nih.gov/37409683/. DOI: 10.1002/nbm.4999.
[47]
MENON R G, ZIBETTI M V W, REGATTE R R. In vivo tibiofemoral cartilage strain mapping under static mechanical loading using continuous GRASP-MRI[J]. J Magn Reson Imaging, 2020, 51(2): 426-434. DOI: 10.1002/jmri.26859.
[48]
BERGER A, LEE M D, LOTAN E, et al. Distinguishing brain metastasis progression from radiation effects after stereotactic radiosurgery using longitudinal GRASP dynamic contrast-enhanced MRI[J]. Neurosurgery, 2023, 92(3): 497-506. DOI: 10.1227/neu.0000000000002228.
[49]
CHEN J J, XIA D, HUANG C C, et al. Free-breathing time-resolved 4D MRI with improved T1-weighting contrast[J/OL]. NMR Biomed, 2024, 37(12): e5247 [2025-05-12]. https://pubmed.ncbi.nlm.nih.gov/39183645/. DOI: 10.1002/nbm.5247.
[50]
FENG L, LIU F, SOULTANIDIS G, et al. Magnetization-prepared GRASP MRI for rapid 3D T1 mapping and fat/water-separated T1 mapping[J]. Magn Reson Med, 2021, 86(1): 97-114. DOI: 10.1002/mrm.28679.
[51]
CHEN L H, XU J, LIU D H, et al. High-resolution free-breathing hepatobiliary phase MRI of the liver using XD-GRASP[J]. Magn Reson Imaging, 2024, 109: 42-48. DOI: 10.1016/j.mri.2024.03.002.
[52]
FENG L, HUANG C C, SHANBHOGUE K, et al. RACER-GRASP: Respiratory-weighted, aortic contrast enhancement-guided and coil-unstreaking golden-angle radial sparse MRI[J]. Magn Reson Med, 2018, 80(1): 77-89. DOI: 10.1002/mrm.27002.

PREV Research progress of blood oxygenation level dependent magnetic resonance imaging in assessing tumor hypoxia
NEXT Research progress of synthetic MRI in clinical diseases
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn