Share:
Share this content in WeChat
X
Review
Research progress of synthetic MRI in clinical diseases
CHEN Zihui  ZHANG Moyun  WANG Meijia  SUN Xiaoran  ZHANG Lina  GAO Xue 

Cite this article as: CHEN Z H, ZHANG M Y, WANG M J, et al. Research progress of synthetic MRI in clinical diseases[J]. Chin J Magn Reson Imaging, 2025, 16(7): 227-234. DOI:10.12015/issn.1674-8034.2025.07.036.


[Abstract] Synthetic MRI (SyMRI) is an emerging quantitative MRI technique that can obtain multi-contrast images through a single scan, achieving equivalent diagnostic efficacy to traditional MRI. In recent years, SyMRI technology has become increasingly mature, with continuously improving image quality. Its application has expanded to various parts of the body, including the central nervous system, breast, musculoskeletal system, ovary, rectum and prostate. The prominent advantage of SyMRI lies in its ability to break through the traditional reliance of MRI on multiple sequence scans, significantly reducing the scanning time. It measures the inherent characteristics of tissues based on quantitative sequences and enables quantitative comparison of tissue parameters. This article reviews the basic principles, feasibility verification and image quality evaluation, as well as clinical applications of SyMRI, aiming to expand new examination ideas for the precise diagnosis and treatment of diseases in various systems.
[Keywords] synthetic magnetic resonance imaging;magnetic resonance imaging;quantitative magnetic resonance imaging;quantitative parameters;artificial intelligence

CHEN Zihui1, 2   ZHANG Moyun1   WANG Meijia1, 2   SUN Xiaoran1, 2   ZHANG Lina1*   GAO Xue3  

1 Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

2 School of Medical Imaging, Dalian Medical University, Dalian 116044, China

3 Department of Pathology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

Corresponding author: ZHANG L N, E-mail: zln201045@163.com

Conflicts of interest   None.

Received  2025-04-04
Accepted  2025-07-06
DOI: 10.12015/issn.1674-8034.2025.07.036
Cite this article as: CHEN Z H, ZHANG M Y, WANG M J, et al. Research progress of synthetic MRI in clinical diseases[J]. Chin J Magn Reson Imaging, 2025, 16(7): 227-234. DOI:10.12015/issn.1674-8034.2025.07.036.

[1]
SONG D D, FAN G G, CHANG M. Research progress on glioma microenvironment and invasiveness utilizing advanced multi-parametric quantitative MRI[J/OL]. Cancers (Basel), 2024, 17(1): 74 [2025-04-03]. https://pubmed.ncbi.nlm.nih.gov/39796702/. DOI: 10.3390/cancers17010074.
[2]
DI GIULIANO F, MINOSSE S, PICCHI E, et al. Comparison between synthetic and conventional magnetic resonance imaging in patients with multiple sclerosis and controls[J]. MAGMA, 2020, 33(4): 549-557. DOI: 10.1007/s10334-019-00804-9.
[3]
PIRES T, PENDEM S, JASEEMUDHEEN M M, et al. Technical aspects and clinical applications of synthetic MRI: a scoping review[J]. Diagnosis (Berl), 2025, 12(2): 163-174. DOI: 10.1515/dx-2024-0168.
[4]
HUANG Y, LI F. Clinical application and progress of synthetic MRI in breast cancer[J]. Chin J Magn Reson Imag, 2024, 15(11): 209-215. DOI: 10.12015/issn.1674-8034.2024.11.033.
[5]
ZHANG Q, ZHANG Y L, LIU X. Research progress of synthetic magnetic resonance imaging technology in malignant tumors[J]. Chin J Magn Reson Imag, 2023, 14(5): 196-202. DOI: 10.12015/issn.1674-8034.2023.05.035.
[6]
WARNTJES J B M, LEINHARD O D, WEST J, et al. Rapid magnetic resonance quantification on the brain: Optimization for clinical usage[J]. Magn Reson Med, 2008, 60(2): 320-329. DOI: 10.1002/mrm.21635.
[7]
JI S, YANG D J, LEE J, et al. Synthetic MRI: technologies and applications in neuroradiology[J]. J Magn Reson Imaging, 2022, 55(4): 1013-1025. DOI: 10.1002/jmri.27440.
[8]
RYU K H, BAEK H J, MOON J I, et al. Initial clinical experience of synthetic MRI as a routine neuroimaging protocol in daily practice: a single-center study[J]. J Neuroradiol, 2020, 47(2): 151-160. DOI: 10.1016/j.neurad.2019.03.002.
[9]
FUJIOKA T, MORI M, OYAMA J, et al. Investigating the image quality and utility of synthetic MRI in the breast[J]. Magn Reson Med Sci, 2021, 20(4): 431-438. DOI: 10.2463/mrms.mp.2020-0132.
[10]
LI M Q, FU W H, OUYANG L Y, et al. Potential clinical feasibility of synthetic MRI in bladder tumors: a comparative study with conventional MRI[J]. Quant Imaging Med Surg, 2023, 13(8): 5109-5118. DOI: 10.21037/qims-22-1419.
[11]
ZHANG W L, ZHU J Y, XU X H, et al. Synthetic MRI of the lumbar spine at 3.0 T: feasibility and image quality comparison with conventional MRI[J]. Acta Radiol, 2020, 61(4): 461-470. DOI: 10.1177/0284185119871670.
[12]
ZHAO L, LIANG M, WU P Y, et al. A preliminary study of synthetic magnetic resonance imaging in rectal cancer: imaging quality and preoperative assessment[J/OL]. Insights Imaging, 2021, 12(1): 120 [2025-04-03]. https://pubmed.ncbi.nlm.nih.gov/34420097/. DOI: 10.1186/s13244-021-01063-w.
[13]
SILVA E, MESCHTER S, TAN M P. Breast biopsy techniques in a global setting-clinical practice review[J/OL]. Transl Breast Cancer Res, 2023, 4: 14 [2025-04-03]. https://pubmed.ncbi.nlm.nih.gov/38751462/. DOI: 10.21037/tbcr-23-12.
[14]
GAO W B, YANG Q X, CHEN X, et al. The value of synthetic MRI in the differential diagnosis of benign and malignant breast lesions[J]. Chin J Radiol, 2021, 55(6): 605-608. DOI: 10.3760/cma.j.cn112149-20200831-01043.
[15]
MENG T B, HE N, HE H Q, et al. The diagnostic performance of quantitative mapping in breast cancer patients: a preliminary study using synthetic MRI[J/OL]. Cancer Imaging, 2020, 20(1): 88 [2025-04-03]. https://pubmed.ncbi.nlm.nih.gov/33317609/. DOI: 10.1186/s40644-020-00365-4.
[16]
ZHANG H, ZHAO J, DAI J K, et al. Synthetic MRI quantitative parameters in discriminating stage T1 nasopharyngeal carcinoma and benign hyperplasia: Combination with morphological features[J/OL]. Eur J Radiol, 2024, 170: 111264 [2025-04-03]. https://pubmed.ncbi.nlm.nih.gov/38103492/. DOI: 10.1016/j.ejrad.2023.111264.
[17]
CAO H Y, XU W J, XU Y, et al. Value of synthetic MRI quantitative parameters in preprocedural evaluation for TRUS/MRI fusion-guided biopsy of the prostate[J]. Prostate, 2023, 83(11): 1089-1098. DOI: 10.1002/pros.24550.
[18]
MATSUDA M, TSUDA T, EBIHARA R, et al. Enhanced masses on contrast-enhanced breast: differentiation using a combination of dynamic contrast-enhanced MRI and quantitative evaluation with synthetic MRI[J]. J Magn Reson Imaging, 2021, 53(2): 381-391. DOI: 10.1002/jmri.27362.
[19]
SUN S Y, LI Z L, NIE L S, et al. The value of synthetic MRI combined with diffusion weighted imaging in differential diagnosis of benign and malignant breast lesions[J]. Chin J Radiol, 2021, 55(6): 597-604. DOI: 10.3760/cma.j.cn112149-20200717-00927.
[20]
LI H J, CAO K, LI X T, et al. Value of synthetic MRI in differential diagnosis of benign and malignant ovarian adnexal lesions with O-RADS MRI score 3-5[J]. Chin J Magn Reson Imag, 2024, 15(5): 148-153, 161. DOI: 10.12015/issn.1674-8034.2024.05.023.
[21]
XIANG Y, ZHANG Q J, CHEN X, et al. Synthetic MRI and amide proton transfer-weighted MRI for differentiating between benign and malignant sinonasal lesions[J]. Eur Radiol, 2024, 34(10): 6820-6830. DOI: 10.1007/s00330-024-10696-6.
[22]
ABUJAMEA A H, ALBADR F B, ASIRI A M. The value of using quantitative MRI based on synthetic acquisition and apparent diffusion coefficient to monitor multiple sclerosis lesion activity[J/OL]. Curr Med Imaging, 2025, 21: e15734056343086 [2025-04-03]. https://pubmed.ncbi.nlm.nih.gov/39806962/. DOI: 10.2174/0115734056343086250103020830.
[23]
GIRDHAR S, NAIR S S, THOMAS B, et al. Non-contrast magnetic resonance evaluation of active multiple sclerosis lesions: Emerging role of quantitative synthetic magnetic resonance imaging[J/OL]. Neuroradiol J, 2025, 38(2): 176-184 [2025-04-03]. https://pubmed.ncbi.nlm.nih.gov/39075947/. DOI: 10.1177/19714009241269541.
[24]
HUANG J, LIANG Y, WANG J Y, et al. Quantitative synthetic MRI for evaluation of hippocampus in patients with multiple sclerosis[J/OL]. Brain Res, 2025, 1847: 149298 [2025-04-03]. https://pubmed.ncbi.nlm.nih.gov/39490955/. DOI: 10.1016/j.brainres.2024.149298.
[25]
TRANFA M, PONTILLO G, PETRACCA M, et al. Quantitative MRI in multiple sclerosis: from theory to application[J]. AJNR Am J Neuroradiol, 2022, 43(12): 1688-1695. DOI: 10.3174/ajnr.A7536.
[26]
TALIDOU A, LEFEBVRE J. Spatial heterogeneity in myelin sheathing impacts signaling reliability and susceptibility to injury[J/OL]. eNeuro, 2025, 12(2): ENEURO.0402-24.2025 [2025-04-03]. https://pubmed.ncbi.nlm.nih.gov/39870523/. DOI: 10.1523/ENEURO.0402-24.2025.
[27]
NASSER N S, SHARMA K, MEHTA P M, et al. Estimation of white matter hyperintensities with synthetic MRI myelin volume fraction in patients with multiple sclerosis and non-multiple-sclerosis white matter hyperintensities: a pilot study among the Indian population[J]. AIMS Neurosci, 2023, 10(2): 144-153. DOI: 10.3934/Neuroscience.2023011.
[28]
SCHNEIDER R, MATUSCHE B, LADOPOULOS T, et al. Quantification of individual remyelination during short-term disease course by synthetic magnetic resonance imaging[J/OL]. Brain Commun, 2022, 4(4): fcac172 [2025-04-03]. https://pubmed.ncbi.nlm.nih.gov/35938071/. DOI: 10.1093/braincomms/fcac172.
[29]
LOU B H, JIANG Y W, LI C M, et al. Quantitative analysis of synthetic magnetic resonance imaging in Alzheimer's disease[J/OL]. Front Aging Neurosci, 2021, 13: 638731 [2025-04-03]. https://pubmed.ncbi.nlm.nih.gov/33912023/. DOI: 10.3389/fnagi.2021.638731.
[30]
FANG Z R, CHEN Q Y, YE L, et al. Clinical value in predicting the microstructural alterations of substantia nigra in patients with early Parkinson's disease based on SyMRI relaxation quantitative analysis and QSM[J]. Chin J Magn Reson Imag, 2024, 15(8): 110-116, 138. DOI: 10.12015/issn.1674-8034.2024.08.017.
[31]
ZAMEER S, SIDDIQUI A S, RIAZ R. Multimodality imaging in acute ischemic stroke[J]. Curr Med Imaging, 2021, 17(5): 567-577. DOI: 10.2174/1573405616666201130094948.
[32]
ANDRÉ J, BARRIT S, JISSENDI P. Synthetic MRI for stroke: a qualitative and quantitative pilot study[J/OL]. Sci Rep, 2022, 12(1): 11552 [2025-04-03]. https://pubmed.ncbi.nlm.nih.gov/35798771/. DOI: 10.1038/s41598-022-15204-8.
[33]
MONTEJO C, LAREDO C, LLULL L, et al. Synthetic MRI in subarachnoid haemorrhage[J/OL]. Clin Radiol, 2021, 76(10): 785.e17-785.785.e23 [2025-04-03]. https://pubmed.ncbi.nlm.nih.gov/34193343/. DOI: 10.1016/j.crad.2021.05.021.
[34]
ZHENG Z F, LIU Y W, WANG Z C, et al. Evaluating age-and gender-related changes in brain volumes in normal adult using synthetic magnetic resonance imaging[J/OL]. Brain Behav, 2024, 14(7): e3619 [2025-04-03]. https://pubmed.ncbi.nlm.nih.gov/38970221/. DOI: 10.1002/brb3.3619.
[35]
SYED NASSER N, VENUGOPAL V K, VEENSTRA C, et al. Age-stratified assessment of brain volumetric segmentation on the Indian population using quantitative magnetic resonance imaging[J]. Clin Neuroradiol, 2024, 34(3): 541-551. DOI: 10.1007/s00062-023-01374-z.
[36]
VANDERHASSELT T, NAEYAERT M, BULS N, et al. Synthetic magnetic resonance-based relaxometry and brain volume: cutoff values for predicting neurocognitive outcomes in very preterm infants[J]. Pediatr Radiol, 2024, 54(9): 1523-1531. DOI: 10.1007/s00247-024-05981-x.
[37]
ZHANG K, LIU C R, ZHU Y F, et al. Synthetic MRI in the detection and quantitative evaluation of sacroiliac joint lesions in axial spondyloarthritis[J/OL]. Front Immunol, 2022, 13: 1000314 [2025-04-03]. [2025-04-03].. DOI: 10.3389/fimmu.2022.1000314.
[38]
JIANG Y P, LI W J, ZHENG J, et al. Magnetic resonance image compilation sequence to quantitatively detect active sacroiliitis with axial spondyloarthritis[J]. Quant Imaging Med Surg, 2022, 12(7): 3666-3678. DOI: 10.21037/qims-21-972.
[39]
JIANG Y W, YU L, LUO X J, et al. Quantitative synthetic MRI for evaluation of the lumbar intervertebral disk degeneration in patients with chronic low back pain[J/OL]. Eur J Radiol, 2020, 124: 108858 [2025-04-03]. https://pubmed.ncbi.nlm.nih.gov/32035370/. DOI: 10.1016/j.ejrad.2020.108858.
[40]
XIA Z Y, MO X X, LAN L, et al. The value of synthetic MRI in assessing early degeneration injury of anterior cruciate ligament[J]. Radiol Pract, 2022, 37(4): 504-508. DOI: 10.13609/j.cnki.1000-0313.2022.04.016.
[41]
TIAN Z R, NI Y B, HE H, et al. Quantitative assessment of rotator cuff injuries using synthetic MRI and IDEAL-IQ imaging techniques[J/OL]. Heliyon, 2024, 10(17): e37307 [2025-04-03]. https://pubmed.ncbi.nlm.nih.gov/39296233/. DOI: 10.1016/j.heliyon.2024.e37307.
[42]
GITTLEMAN H, SLOAN A E, BARNHOLTZ-SLOAN J S. An independently validated survival nomogram for lower-grade glioma[J]. Neuro Oncol, 2020, 22(5): 665-674. DOI: 10.1093/neuonc/noz191.
[43]
LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251. DOI: 10.1093/neuonc/noab106.
[44]
ONISHI S, YAMASAKI F, AKIYAMA Y, et al. Usefulness of synthetic MRI for differentiation of IDH-mutant diffuse gliomas and its comparison with the T2-FLAIR mismatch sign[J]. J Neurooncol, 2024, 170(2): 429-436. DOI: 10.1007/s11060-024-04794-0.
[45]
GE X, GAN T J, YANG Z H, et al. Whole-tumor histogram analysis of synthetic magnetic resonance imaging predicts isocitrate dehydrogenase mutation status in gliomas[J]. Quant Imaging Med Surg, 2024, 14(3): 2225-2239. DOI: 10.21037/qims-23-1288.
[46]
KAZAMA T, TAKAHARA T, KWEE T C, et al. Quantitative values from synthetic MRI correlate with breast cancer subtypes[J/OL]. Life (Basel), 2022, 12(9): 1307 [2025-04-03]. https://pubmed.ncbi.nlm.nih.gov/36143344/. DOI: 10.3390/life12091307.
[47]
LI Q, XIAO Q, YANG M, et al. Histogram analysis of quantitative parameters from synthetic MRI: Correlations with prognostic factors and molecular subtypes in invasive ductal breast cancer[J/OL]. Eur J Radiol, 2021, 139: 109697 [2025-04-03]. https://pubmed.ncbi.nlm.nih.gov/33857828/. DOI: 10.1016/j.ejrad.2021.109697.
[48]
LI Q, HUANG Y, YANG M, et al. The histogram features of quantitative parameters from synthetic MRI in predicting the expression of human epithelial growth factor receptor 2 in breast invasive ductual carcinoma[J]. Chin J Radiol, 2021, 55(12): 1294-1300. DOI: 10.3760/cma.j.cn112149-20210620-00584.
[49]
ZHANG Q, ZHAO Y, NIE J, et al. Pretreatment synthetic MRI features for triple-negative breast cancer[J/OL]. Clin Radiol, 2024, 79(2): e219-e226 [2025-04-03]. https://pubmed.ncbi.nlm.nih.gov/37935611/. DOI: 10.1016/j.crad.2023.10.015.
[50]
GAO W B, YANG Q X, LI X H, et al. Synthetic MRI with quantitative mappings for identifying receptor status, proliferation rate, and molecular subtypes of breast cancer[J/OL]. Eur J Radiol, 2022, 148: 110168 [2025-04-03]. https://pubmed.ncbi.nlm.nih.gov/35078137/. DOI: 10.1016/j.ejrad.2022.110168.
[51]
QU M M, FENG W, LIU X R, et al. Investigation of synthetic MRI with quantitative parameters for discriminating axillary lymph nodes status in invasive breast cancer[J/OL]. Eur J Radiol, 2024, 175: 111452 [2025-04-03]. https://pubmed.ncbi.nlm.nih.gov/38604092/. DOI: 10.1016/j.ejrad.2024.111452.
[52]
YANG X, LU Z, TAN X Y, et al. Evaluating the added value of synthetic magnetic resonance imaging in predicting sentinel lymph node status in breast cancer[J]. Quant Imaging Med Surg, 2024, 14(6): 3789-3802. DOI: 10.21037/qims-24-1.
[53]
ZHAO L, LIANG M, SHI Z, et al. Preoperative volumetric synthetic magnetic resonance imaging of the primary tumor for a more accurate prediction of lymph node metastasis in rectal cancer[J]. Quant Imaging Med Surg, 2021, 11(5): 1805-1816. DOI: 10.21037/qims-20-659.
[54]
GRADISHAR W J, MORAN M S, ABRAHAM J, et al. Breast cancer, version 3.2024, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2024, 22(5): 331-357. DOI: 10.6004/jnccn.2024.0035.
[55]
CORTAZAR P, ZHANG L J, UNTCH M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis[J]. Lancet, 2014, 384(9938): 164-172. DOI: 10.1016/S0140-6736(13)62422-8.
[56]
ZHAO R M, DU S Y, GAO S, et al. Time course changes of synthetic relaxation time during neoadjuvant chemotherapy in breast cancer: the optimal parameter for treatment response evaluation[J]. J Magn Reson Imaging, 2023, 58(4): 1290-1302. DOI: 10.1002/jmri.28597.
[57]
DU S Y, GAO S, ZHAO R M, et al. Contrast-free MRI quantitative parameters for early prediction of pathological response to neoadjuvant chemotherapy in breast cancer[J]. Eur Radiol, 2022, 32(8): 5759-5772. DOI: 10.1007/s00330-022-08667-w.
[58]
LIN D L, LIU J H, KE C, et al. Radiomics analysis of quantitative maps from synthetic MRI for predicting grades and molecular subtypes of diffuse gliomas[J]. Clin Neuroradiol, 2024, 34(4): 817-826. DOI: 10.1007/s00062-024-01421-3.
[59]
MOYA-SÁEZ E, NAVARRO-GONZÁLEZ R, CEPEDA S, et al. Synthetic MRI improves radiomics-based glioblastoma survival prediction[J/OL]. NMR Biomed, 2022, 35(9): e4754 [2025-04-03]. https://pubmed.ncbi.nlm.nih.gov/35485596/. DOI: 10.1002/nbm.4754.
[60]
RYU K, NAM Y, GHO S M, et al. Data-driven synthetic MRI FLAIR artifact correction via deep neural network[J]. J Magn Reson Imaging, 2019, 50(5): 1413-1423. DOI: 10.1002/jmri.26712.
[61]
KUMAR S, SABER H, CHARRON O, et al. Correcting synthetic MRI contrast-weighted images using deep learning[J/OL]. Magn Reson Imaging, 2024, 106: 43-54 [2025-04-03]. https://pubmed.ncbi.nlm.nih.gov/38092082/. DOI: 10.1016/j.mri.2023.11.015.
[62]
DAI X J, LEI Y, WANG T H, et al. Automated delineation of head and neck organs at risk using synthetic MRI-aided mask scoring regional convolutional neural network[J]. Med Phys, 2021, 48(10): 5862-5873. DOI: 10.1002/mp.15146.
[63]
WANG K J, LIU W V, YANG R J, et al. Super-resolution synthetic MRI using deep learning reconstruction for accurate diagnosis of knee osteoarthritis[J/OL]. Insights Imaging, 2025, 16(1): 44 [2025-04-03]. https://pubmed.ncbi.nlm.nih.gov/39961957/. DOI: 10.1186/s13244-025-01911-z.

PREV Clinical application progress of magnetic resonance golden angle radial sparse parallel technique
NEXT Research progress of synthetic MRI in clinical diseases
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn