Share:
Share this content in WeChat
X
Clinical Article
MRI-based longitudinal assessment of hippocampal subregion volume changes during radiotherapy in nasopharyngeal carcinoma patients
DONG Chuangwei  LIU Jin  CAO Zong  ZHOU Yanfei  YANG Lizhuang  YU Yongqiang  LI Hai 

DOI:10.12015/issn.1674-8034.2025.08.002.


[Abstract] Objective To investigate the changes in hippocampal subregion volumes in nasopharyngeal carcinoma (NPC) patients during radiotherapy and assess their correlation with radiation dose.Materials and Methods This study was a prospective longitudinal study that enrolled 41 patients with newly diagnosed NPC between March 2019 and April 2025. Brain MRI scans were performed using a 3.0 T scanner at three time points: pre-radiotherapy (1 to 2 days before treatment), mid-radiotherapy (19 to 20 days after treatment initiation), and post-radiotherapy (1 to 2 days after treatment completion). Hippocampal subregions were automatically segmented using FreeSurfer 7.3 software, and volume changes were assessed using a linear mixed model. Pearson correlation analysis was then conducted to explore the relationship between hippocampal volume changes and radiation dose.Results Compared to pre-radiotherapy, during the mid-radiotherapy period, the volumes of bilateral whole hippocampus, presubiculum, cornu ammonis 1 (CA1), CA3, CA4, granule cell-molecular layer-dentate gyrus (GC-ML-DG), molecular layer, hippocampal amygdala transition area (HATA), and right subiculum were significantly reduced (family-wise error, FWE correction, P < 0.05). After radiotherapy, except for the left HATA and right presubiculum, the volumes of other hippocampal subregions continued to decrease significantly, and the volume of the right fimbria hippocampi also decreased (FWE correction, P < 0.05). The volume change in the left hippocampal tail was significantly negatively correlated with the left hippocampal radiation dose (r = -0.555). All results were corrected for FWE using the Bonferroni method, with the significance level set at a corrected p-value of <0.05.Conclusions During radiotherapy, the volumes of several hippocampal subregions in NPC patients significantly decreased. Furthermore, after radiotherapy, the volume change in the left hippocampal tail was significantly negatively correlated with the radiation dose to the left hippocampus, indicating that the radiation dose may influence the volume change in this region.
[Keywords] head and neck neoplasms;nasopharyngeal carcinoma;radiotherapy;hippocampal subregions;dose-response relationship;magnetic resonance imaging

DONG Chuangwei1, 2   LIU Jin2, 3   CAO Zong2, 3   ZHOU Yanfei2, 3   YANG Lizhuang2, 3   YU Yongqiang1, 2   LI Hai1, 2, 3*  

1 Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China

2 Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

3 Science Island Branch, University of Science and Technology of China, Hefei 230026, China

Corresponding author: LI H, E-mail: hli@cmpt.ac.cn

Conflicts of interest   None.

Received  2025-06-05
Accepted  2025-08-08
DOI: 10.12015/issn.1674-8034.2025.08.002
DOI:10.12015/issn.1674-8034.2025.08.002.

[1]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[2]
CHEN Y P, CHAN A T C, LE Q T, et al. Nasopharyngeal carcinoma[J]. Lancet, 2019, 394(10192): 64-80. DOI: 10.1016/S0140-6736(19)30956-0.
[3]
TANG L L, CHEN Y P, CHEN C B, et al. The Chinese Society of Clinical Oncology (CSCO) clinical guidelines for the diagnosis and treatment of nasopharyngeal carcinoma[J]. Cancer Commun (Lond), 2021, 41(11): 1195-1227. DOI: 10.1002/cac2.12218.
[4]
CHOW J C H, LEE J, LAI M M P, et al. Multi-domain neurocognitive impairment following definitive intensity-modulated radiotherapy for nasopharyngeal cancer: a cross-sectional study[J/OL]. Radiother Oncol, 2024, 193: 110143 [2025-06-04]. https://pubmed.ncbi.nlm.nih.gov/38341098/. DOI: 10.1016/j.radonc.2024.110143.
[5]
LESKINEN S, ALSALEK S, WERNICKE A G. Rbio-09. effects of radiation on the hippocampus and hippocampal neurogenesis: a systematic review of injury mechanisms and intervention strategies[J/OL]. Neuro-Oncology, 2024, 26(Supplement_8): viii271 [2025-06-04]. https://academic.oup.com/neuro-oncology/article/26/Supplement_8/viii271/7889784?login=false. DOI: 10.1093/neuonc/noae165.1075.
[6]
SHI L, DU F L, SUN Z W, et al. Radiation-induced gray matter atrophy in patients with nasopharyngeal carcinoma after intensity modulated radiotherapy: a MRI magnetic resonance imaging voxel-based morphometry study[J]. Quant Imaging Med Surg, 2018, 8(9): 902-909. DOI: 10.21037/qims.2018.10.09.
[7]
GODA J S, DUTTA D, KRISHNA U, et al. Hippocampal radiotherapy dose constraints for predicting long-term neurocognitive outcomes: mature data from a prospective trial in young patients with brain tumors[J]. Neuro Oncol, 2020, 22(11): 1677-1685. DOI: 10.1093/neuonc/noaa076.
[8]
POSPISIL P, HYNKOVA L, HNIDAKOVA L, et al. Unilateral hippocampal sparing during whole brain radiotherapy for multiple brain metastases: narrative and critical review[J/OL]. Front Oncol, 2024, 14: 1298605 [2025-06-04]. https://pubmed.ncbi.nlm.nih.gov/38327742/. DOI: 10.3389/fonc.2024.1298605.
[9]
TAKESHITA Y, WATANABE K, KAKEDA S, et al. Early volume reduction of the hippocampus after whole-brain radiation therapy: an automated brain structure segmentation study[J]. Jpn J Radiol, 2020, 38(2): 118-125. DOI: 10.1007/s11604-019-00895-3.
[10]
SEIBERT T M, KARUNAMUNI R, BARTSCH H, et al. Radiation dose-dependent hippocampal atrophy detected with longitudinal volumetric magnetic resonance imaging[J]. Int J Radiat Oncol Biol Phys, 2017, 97(2): 263-269. DOI: 10.1016/j.ijrobp.2016.10.035.
[11]
CHEN S, ZHOU Y F, HU Z T, et al. Voxel-based morphological study on the changes of brain structure during radiotherapy of nasopharyngeal carcinoma[J]. Chin J Magn Reson Imag, 2022, 13(12): 81-86. DOI: 10.12015/issn.1674-8034.2022.12.014.
[12]
MIRANDA A M, BRAVO F V, CHAN R B, et al. Differential lipid composition and regulation along the hippocampal longitudinal axis[J/OL]. Transl Psychiatry, 2019, 9(1): 144 [2025-06-04]. https://pubmed.ncbi.nlm.nih.gov/31028243/. DOI: 10.1038/s41398-019-0478-6.
[13]
OLTMER J, WILLIAMS E M, GROHA S, et al. Neuron collinearity differentiates human hippocampal subregions: a validated deep learning approach[J/OL]. Brain Commun, 2024, 6(5): fcae296 [2025-06-04]. https://pubmed.ncbi.nlm.nih.gov/39262825/. DOI: 10.1093/braincomms/fcae296.
[14]
LEE N, HARRIS J, GARDEN A S, et al. Intensity-modulated radiation therapy with or without chemotherapy for nasopharyngeal carcinoma: radiation therapy oncology group phase II trial 0225[J]. J Clin Oncol, 2009, 27(22): 3684-3690. DOI: 10.1200/JCO.2008.19.9109.
[15]
LIU J, WANG W J, ZHOU Y F, et al. Early-onset micromorphological changes of neuronal fiber bundles during radiotherapy[J]. J Magn Reson Imaging, 2022, 56(1): 210-218. DOI: 10.1002/jmri.28018.
[16]
REUTER M, SCHMANSKY N J, ROSAS H D, et al. Within-subject template estimation for unbiased longitudinal image analysis[J]. Neuroimage, 2012, 61(4): 1402-1418. DOI: 10.1016/j.neuroimage.2012.02.084.
[17]
IGLESIAS J E, VAN LEEMPUT K, AUGUSTINACK J, et al. Bayesian longitudinal segmentation of hippocampal substructures in brain MRI using subject-specific atlases[J/OL]. Neuroimage, 2016, 141: 542-555 [2025-06-04]. https://pubmed.ncbi.nlm.nih.gov/27426838/. DOI: 10.1016/j.neuroimage.2016.07.020.
[18]
KUMAR R, KUMARI P, KUMAR R. Central nervous system response against ionizing radiation exposure: cellular, biochemical, and molecular perspectives[J]. Mol Neurobiol, 2025, 62(6): 7268-7295. DOI: 10.1007/s12035-025-04712-z.
[19]
SCHMAL Z, ISERMANN A, HLADIK D, et al. DNA damage accumulation during fractionated low-dose radiation compromises hippocampal neurogenesis[J/OL]. Radiother Oncol, 2019, 137: 45-54 [2025-06-04]. https://pubmed.ncbi.nlm.nih.gov/31063923/. DOI: 10.1016/j.radonc.2019.04.021.
[20]
BALENTOVA S, ADAMKOV M. Molecular, cellular and functional effects of radiation-induced brain injury: a review[J]. Int J Mol Sci, 2015, 16(11): 27796-27815. DOI: 10.3390/ijms161126068.
[21]
KEMPERMANN G. What is adult hippocampal neurogenesis good for?[J/OL]. Front Neurosci, 2022, 16: 852680 [2025-06-04]. https://pubmed.ncbi.nlm.nih.gov/35495058/. DOI: 10.3389/fnins.2022.852680.
[22]
RASCHKE F, WITZMANN K, SEIDLITZ A, et al. Time- and dose-dependent volume decreases in subcortical grey matter structures of glioma patients after radio(chemo)therapy[J/OL]. Clin Transl Radiat Oncol, 2022, 36: 99-105 [2025-06-04]. https://pubmed.ncbi.nlm.nih.gov/35965663/. DOI: 10.1016/j.ctro.2022.07.003.
[23]
LEE H I, KANG M K, HWANG K, et al. Volumetric changes in gray matter after radiotherapy detected with longitudinal magnetic resonance imaging in glioma patients[J/OL]. Radiother Oncol, 2022, 176: 157-164 [2025-06-04]. https://pubmed.ncbi.nlm.nih.gov/36208651/. DOI: 10.1016/j.radonc.2022.09.022.
[24]
BLACKSTAD J S, OSEN K K, LEERGAARD T B. The fibro- and cyto-architecture demarcating the border between the dentate gyrus and CA3 in sheep (Ovis aries) and domestic pig (Sus scrofa domesticus)[J]. Hippocampus, 2022, 32(9): 639-659. DOI: 10.1002/hipo.23457.
[25]
GAGE F H. Adult neurogenesis in the human dentate gyrus[J/OL]. Hippocampus, 2025, 35(1): e23655 [2025-06-04]. https://pubmed.ncbi.nlm.nih.gov/39648699/. DOI: 10.1002/hipo.23655.
[26]
HOLIKOVA K, SELINGEROVA I, POSPISIL P, et al. Hippocampal subfield volumetric changes after radiotherapy for brain metastases[J/OL]. Neurooncol Adv, 2024, 6(1): vdae040 [2025-06-04]. https://pubmed.ncbi.nlm.nih.gov/38645488/. DOI: 10.1093/noajnl/vdae040.
[27]
JIMÉNEZ-LABAIG P, AYMERICH C, RULLAN A, et al. Prevalence of depressive and anxiety symptoms in patients with head and neck cancer undergoing radiotherapy: a systematic review and meta-analysis of longitudinal studies[J/OL]. Radiother Oncol, 2025, 202: 110649 [2025-06-04]. https://pubmed.ncbi.nlm.nih.gov/39586358/. DOI: 10.1016/j.radonc.2024.110649.
[28]
CHU Z S, YUAN L J, LIAN K, et al. Reduced gray matter volume of the hippocampal tail in melancholic depression: evidence from an MRI study[J/OL]. BMC Psychiatry, 2024, 24(1): 183 [2025-06-04]. https://pubmed.ncbi.nlm.nih.gov/38443878/. DOI: 10.1186/s12888-024-05630-5.
[29]
WANG S J, LERI F, RIZVI S J. Anhedonia as a central factor in depression: Neural mechanisms revealed from preclinical to clinical evidence[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2021, 110: 110289 [2025-06-04]. https://pubmed.ncbi.nlm.nih.gov/33631251/. DOI: 10.1016/j.pnpbp.2021.110289.
[30]
RUSSO S J, NESTLER E J. The brain reward circuitry in mood disorders[J]. Nat Rev Neurosci, 2013, 14(9): 609-625. DOI: 10.1038/nrn3381.
[31]
DANIEL E, DENG F, PATEL S K, et al. Effect of chemotherapy on hippocampal volume and shape in older long-term breast cancer survivors[J/OL]. Front Aging Neurosci, 2024, 16: 1347721 [2025-06-04]. https://pubmed.ncbi.nlm.nih.gov/38524113/. DOI: 10.3389/fnagi.2024.1347721.
[32]
ZHOU Y F, LI J, FU X, et al. Surface-based morphological study on the relationship between cortical surface morphological changes and cancer-related fatigue changes in early chemotherapy for breast cancer[J]. Chin J Magn Reson Imag, 2024, 15(2): 48-55. DOI: 10.12015/issn.1674-8034.2024.02.007.
[33]
TAMNES C K, BOS M G N, VAN DE KAMP F C, et al. Longitudinal development of hippocampal subregions from childhood to adulthood[J/OL]. Dev Cogn Neurosci, 2018, 30: 212-222 [2025-06-04]. https://pubmed.ncbi.nlm.nih.gov/29597156/. DOI: 10.1016/j.dcn.2018.03.009.
[34]
YE R, GOODHEART A E, LOCASCIO J J, et al. Differential vulnerability of hippocampal subfields to amyloid and tau deposition in the lewy body diseases[J/OL]. Neurology, 2024, 102(12): e209460 [2025-06-04]. https://pubmed.ncbi.nlm.nih.gov/38815233/. DOI: 10.1212/WNL.0000000000209460.
[35]
HAAST R A M, KASHYAP S, IVANOV D, et al. Insights into hippocampal perfusion using high-resolution, multi-modal 7T MRI[J/OL]. Proc Natl Acad Sci USA, 2024, 121(11): e2310044121 [2025-06-04]. https://pubmed.ncbi.nlm.nih.gov/38446857/. DOI: 10.1073/pnas.2310044121.
[36]
NGUYEN H, HOPPER A B, KARUNAMUNI R, et al. Assessing atrophy and neurocognitive decline in hippocampal subfields after fractionated brain radiation therapy[J/OL]. Int J Radiat Oncol, 2024, 120(2): S40-S41 [2025-06-04]. https://www.sciencedirect.com/science/article/pii/S0360301624008228. DOI: 10.1016/j.ijrobp.2024.07.060.
[37]
QIU Q T, YANG Z D, WU S Y, et al. Automatic segmentation of hippocampus in hippocampal sparing whole brain radiotherapy: a multitask edge-aware learning[J]. Med Phys, 2021, 48(4): 1771-1780. DOI: 10.1002/mp.14760.
[38]
CHEN Y, YUE H L, KUANG H L, et al. RBS-Net: Hippocampus segmentation using multi-layer feature learning with the region, boundary and structure loss[J/OL]. Comput Biol Med, 2023, 160: 106953 [2025-06-04]. https://pubmed.ncbi.nlm.nih.gov/37120987/. DOI: 10.1016/j.compbiomed.2023.106953.

PREV The relationship between the abnormality of functional gradient and anxiety-depression disorders in patients with bilateral sudden sensorineural hearing loss
NEXT A preliminary study based on diffusion tensor imaging in brain microstructure of substantia nigra and insular leaf of Parkinson<sup><sup>,</sup></sup>s disease patients with frozen gait
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn