Share:
Share this content in WeChat
X
Clinical Article
The combined application of QSM and DTI to investigate the impact of iron deposition on microstructural changes in gray matter nuclei following ischemia in the unilateral middle cerebral artery territory
GUO Xiaolin  SONG Yancheng  LIU Fenghai  KANG Liqing  WANG Xiaoyu 

DOI:10.12015/issn.1674-8034.2025.08.004.


[Abstract] Objective This study employed quantitative susceptibility mapping (QSM) and diffusion tensor imaging (DTI) to measure alterations in iron content and microstructural integrity within the gray matter nuclei following ischemia in the middle cerebral artery (MCA) territory. Furthermore, the potential correlations between these changes were analyzed.Materials and Methods Thirty-one patients with severe unilateral MCA stenosis or occlusion were selected for QSM, DTI, magnetic resonance arterial spin labeling (ASL) and routine MRI scans. In patients with ASL prompted ischemia, the magnetic susceptibility value (MSV), mean diffusion (MD) values and fractionalisotropy (FA) values of the affected and healthy caudate nucleus, globus pallidus, putamen, red nucleus and substantia nigra were measured respectively. Paired sample t-tests were utilized to compare the differences in these parameters between the gray matter nuclei on the two sides. Additionally, the correlations between the susceptibility values and DTI parameter values in the affected nuclei were analyzed.Results The nucleus MSV on the affected side of the 31 patients were all higher than the contralateral side, and there was no statistically significant difference in MSV on both sides of the red nucleus (P > 0.05), and the MSV differences on the other nucleus (P < 0.05). Both the MD and FA values of the affected nucleus were statistically significant compared with the opposite side (P < 0.05). The FA values of the caudate nucleus, putamen and substantia nigra were positively correlated with MSV (r = 0.438, 0.710 and 0.394, P values​were all < 0.05); the MD values of the caudate nucleus and putamen were negatively correlated with MSV (r = -0.417 and -0.593, P < 0.05).Conclusions Following unilateral MCA territory ischemia, abnormal iron deposition and microstructural alterations may occur in multiple gray matter nuclei of the brain. Notably, a strong correlation exists between abnormal iron deposition and microstructural changes in the putamen.
[Keywords] ischemic stroke;severe stenosis or occlusion of the middle cerebral artery;quantitative susceptibility mapping;diffusion tensor imaging;magnetic resonance imaging;gray matter nuclei

GUO Xiaolin   SONG Yancheng*   LIU Fenghai   KANG Liqing   WANG Xiaoyu  

Department of MRI, Cangzhou Central Hospital, Cangzhou 061000, China

Corresponding author: SONG Y C, E-mail: 573769265@qq.com

Conflicts of interest   None.

Received  2025-02-27
Accepted  2025-08-08
DOI: 10.12015/issn.1674-8034.2025.08.004
DOI:10.12015/issn.1674-8034.2025.08.004.

[1]
LI Y, XU X, WU X, et al. Cell polarization in ischemic stroke: molecular mechanisms and advances[J]. Neural Regen Res, 2024, 20(3): 632-645. DOI: 10.4103/NRR.NRR-D-23-01336.
[2]
MENG Y, LI C X, ZHANG X. Quantitative Evaluation of Oxygen Extraction Fraction Changes in the Monkey Brain during Acute Stroke by Using Quantitative Susceptibility Mapping[J/OL]. Life (Basel), 2023, 13(4): 1008 [2025-02-27]. https://pubmed.ncbi.nlm.nih.gov/37109537/. DOI: 10.3390/life13041008.
[3]
LI C X, MENG Y, YAN Y, et al. Investigation of White Matter and Grey Matter Alterations in the Monkey Brain Following Ischemic Stroke Using Diffusion Tensor Imaging[J]. Investig Magn Reson Imaging, 2022, 26(4): 275-283. DOI: 10.13104/imri.2022.26.4.275.
[4]
ZHAO Q, MAIMAITIAILI S, BI Y, et al. Brain Iron Deposition Alterations in Type 2 Diabetes Mellitus Patients With Mild Cognitive Impairment Based on Quantitative Susceptibility Mapping[J/OL]. J Diabetes, 2025, 17(1): 70052 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/39843980. DOI: 10.1111/1753-0407.70052.
[5]
ZHANG X Y, HAN P P, ZHAO Y N, et al. Crosstalk between autophagy and ferroptosis mediate injury in ischemic stroke by generating reactive oxygen species[J/OL]. Heliyon, 2024, 10(7): 28959 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/38601542. DOI: 10.1016/j.heliyon.2024.e28959.
[6]
CHAI Z, ZHENG J, SHEN J. Mechanism of ferroptosis regulating ischemic stroke and pharmacologically inhibiting ferroptosis in treatment of ischemic stroke[J/OL]. CNS Neurosci Ther, 2024, 30(7): 14865 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/39042604. DOI: 10.1111/cns.14865.
[7]
ZHANG Q, JIANG H, HAN S, et al. Magnetic resonance imaging quantitative assessment of corticospinal tract damage in basal ganglia infarction[J/OL]. Medicine (Baltimore), 2024, 103(43): 40300 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/39470499. DOI: 10.1097/md.0000000000040300.
[8]
AHTAM B, SOLTI M, DOO J M, et al. Diffusion-Weighted Magnetic Resonance Imaging Demonstrates White Matter Alterations in Watershed Regions in Children With Moyamoya Without Stroke or Silent Infarct[J/OL]. Pediatr Neurol, 2023, 143: 89-94. DOI: 10.1016/j.pediatrneurol.2023.03.005.
[9]
THAMM T, ZWEYNERT S, PIPER S K, et al. Diagnostic and prognostic benefit of arterial spin labeling in subacute stroke[J/OL]. Brain Behav, 2019, 9(5): e01271 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520295. DOI: 10.1002/brb3.1271.
[10]
DENG X, BU M, LIANG J, et al. Relationship between cognitive impairment and hippocampal iron overload: A quantitative susceptibility mapping study of a rat model[J/OL]. Neuroimage, 2025, 306: 121006 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/39788338. DOI: 10.1016/j.neuroimage.2025.121006.
[11]
GAO Y, LIANG C, ZHANG Q, et al. Brain iron deposition and cognitive decline in patients with cerebral small vessel disease: a quantitative susceptibility mapping study[J/OL]. Alzheimers Res Ther, 2025, 17(1): 17 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/39789638. DOI: 10.1186/s13195-024-01638-x.
[12]
MAO H, DOU W, CHEN K, et al. Evaluating iron deposition in gray matter nuclei of patients with unilateral middle cerebral artery stenosis using quantitative susceptibility mapping[J/OL]. Neuroimage Clin, 2022, 34: 103021 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/35500369. DOI: 10.1016/j.nicl.2022.103021.
[13]
DU L, ZHAO Z, LIU X, et al. Alterations of Iron Level in the Bilateral Basal Ganglia Region in Patients With Middle Cerebral Artery Occlusion[J/OL]. Front Neurosci, 2021, 14: 608058 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/33551726. DOI: 10.3389/fnins.2020.608058.
[14]
MAO H M, WANG X Y, CHEN K J, et al. Preliminary study of quantitative susceptibility mapping in the brain iron deposition of unilateral middle cerebral artery stenosis or occlusion[J]. Chin J Magn Reson Imaging, 2021, 12(11): 16-20. DOI: 10.12015/issn.1674-8034.2021.11.004.
[15]
LI B, YU W, VERKHRATSKY A. Trace metals and astrocytes physiology and pathophysiology[J/OL]. Cell Calcium, 2024, 118: 102843 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/38199057. DOI: 10.1016/j.ceca.2024.102843.
[16]
AHMED Z, CHAUDHARY F, AGRAWAL K D. Epidemiology, Pathophysiology, and Current Treatment Strategies in Stroke[J]. Cardiol Cardiovasc Med, 2024, 8(4): 389-404. DOI: 10.26502/fccm.92920399.
[17]
BRIAN C, NEAL E H, BOWMAN A B, et al. Endothelial cells are critical regulators of iron transport in a model of the human blood-brain barrier[J]. J Cereb Blood Flow Metab, 2018, 39(11): 2117-2131. DOI: 10.1177/0271678X18783372.
[18]
CAMPOS-ESCAMILLA C. The role of transferrins and iron-related proteins in brain iron transport: applications to neurological diseases[J/OL]. Adv Protein Chem Struct Biol, 2020, 123: 133-162. DOI: 10.1016/bs.apcsb.2020.09.002.
[19]
MARCO D, REINHOLD S. Remote changes after ischaemic infarcts: a distant target for therapy?[J]. Brain, 2017, 140(7): 1818-1820. DOI: 10.1093/brain/awx135.
[20]
LEE H, LEE K, KIM Y D, et al. Association between substantia nigra degeneration and functional outcome in patients with basal ganglia infarction[J/OL]. Eur J Neurol, 2024, 31(2): 16111 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/37903090. DOI: 10.1111/ene.16111.
[21]
MAO H, DOU W, WANG X, et al. Iron Deposition in Gray Matter Nuclei of Patients With Intracranial Artery Stenosis: A Quantitative Susceptibility Mapping Study[J/OL]. Front Neurol, 2022, 12: 785822 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/35069414. DOI: 10.3389/fneur.2021.785822.
[22]
ZHI Y, HUANG T, LIU S, et al. Correlation between iron deposition and cognitive function in mild to moderate Alzheimer's disease based on quantitative susceptibility mapping[J/OL]. Front Aging Neurosci, 2024, 16: 1485530 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/39478701. DOI: 10.3389/fnagi.2024.1485530.
[23]
FINE M J, KOSYAKOVSKY J, BOWE T T, et al. Low-dose intranasal deferoxamine modulates memory, neuroinflammation, and the neuronal transcriptome in the streptozotocin rodent model of Alzheimer's disease[J/OL]. Front Neurosci, 2025, 18: 1528374 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/39872995. DOI: 10.3389/fnins.2024.1528374.
[24]
KIM D, MORIKAWA S, NAKAGAWA T, et al. Advances in brain ischemia mechanisms and treatment approaches: Recent insights and inflammation-driven risks[J/OL]. Exp Neurol, 2025, 386: 115177 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/39922448. DOI: 10.1016/j.expneurol.2025.115177.
[25]
LAI K, PRITIŠANAC I, LIU Q Z, et al. Glutamate acts on acid-sensing ion channels to worsen ischaemic brain injury[J]. Nature, 2024, 631(8022): 826-834. DOI: 10.1038/s41586-024-07684-7.
[26]
FOTEINI C, DIMITRIOS T, AGGELIKI F, et al. Diffusion Tensor Imaging as a Prognostic Tool for Recovery in Acute and Hyperacute Stroke[J]. Neurol Int, 2022, 14(4): 841-874. DOI: 10.3390/neurolint14040069.
[27]
KUO D P, KUO P C, CHEN Y C, et al. Machine learning-based segmentation of ischemic penumbra by using diffusion tensor metrics in a rat model[J/OL]. J Biomed Sci, 2020, 27(1): 80 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/32664906. DOI: 10.1186/s12929-020-00672-9.
[28]
GARCÍA A OSA, BRAMBATI S M, DESAUTELS A, et al. Timing stroke: A review on stroke pathophysiology and its influence over time on diffusion measures[J/OL]. J Neurol Sci, 2022, 441: 120377 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/36049374. DOI: 10.1016/j.jns.2022.
[29]
LIU Y, CHU S, HU Y, et al. Exogenous Adenosine Antagonizes Excitatory Amino Acid Toxicity in Primary Astrocytes[J]. Cell Mol Neurobiol, 2020, 41(4): 1-18. DOI: 10.1007/s10571-020-00876-5.
[30]
RULSEH A M, KELLER J, TINTĚRA J, et al. Chasing shadows: What determines DTI metrics in gray matter regions? An in vitro and in vivo study[J]. J Magn Reson Imaging, 2013, 38(5): 1103-1110. DOI: 10.1002/jmri.24065.
[31]
YANG L, CHENG Y, SUN Y, et al. Combined Application of Quantitative Susceptibility Mapping and Diffusion Kurtosis Imaging Techniques to Investigate the Effect of Iron Deposition on Microstructural Changes in the Brain in Parkinson's Disease[J/OL]. Front Aging Neurosci, 2022, 14: 792778 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/35370619. DOI: 10.3389/fnagi.2022.792778.
[32]
JUN J G, FENG Y, YAN D S, et al. Intranasal administration of α-synuclein preformed fibrils triggers microglial iron deposition in the substantia nigra of Macaca fascicularis[J/OL]. Cell Death Dis, 2021, 12(1): 81 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/33441545. DOI: 10.1038/s41419-020-03369-x.
[33]
STACHO M, HÄUSLER N A, BRANDSTETTER A, et al. Phylogenetic reduction of the magnocellular red nucleus in primates and inter-subject variability in humans[J/OL]. Front Neuroanat, 2024, 18: 1331305 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/38550712. DOI: 10.3389/fnana.2024.1331305.
[34]
MAYA K, GILAD S. Differential Synaptic Input to External Globus Pallidus Neuronal Subpopulations In Vivo[J]. Neuron, 2020, 109(3): 516-529. DOI: 10.1101/2020.02.27.967869.
[35]
GONG N J, WONG C S, CHAN C C, et al. Aging in deep gray matter and white matter revealed by diffusional kurtosis imaging[J]. Neurobiol Aging, 2014, 35(10): 2203-2216. DOI: 10.1016/j.neurobiolaging.2014.03.011.
[36]
ALMASAAD M J, BATAINEH M Z, ZAQOUT S. Neuronal diversity in the caudate nucleus: A comparative study between camel and human brains[J/OL]. Anat Rec (Hoboken), 2024 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/39118384. DOI: 10.1002/ar.25555.

PREV A preliminary study based on diffusion tensor imaging in brain microstructure of substantia nigra and insular leaf of Parkinson<sup><sup>,</sup></sup>s disease patients with frozen gait
NEXT Correlation between Willis ring integrity and plaque characteristics and multiple infarctions in patients with acute ischemic stroke
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn