Share:
Share this content in WeChat
X
Clinical Article
Study on value of intra-tumoral and peri-tumoral features of multimodal MRI radiomics in distinguishing fibrous from nonfibrous meningiomas
YANG Huimin  LI Wenxin  JIANG Xingyue  WANG Qianqian  ZHANG Juntao  LIU Xinjiang 

DOI:10.12015/issn.1674-8034.2025.08.008.


[Abstract] Objective To investigate the clinical value of T2WI-weighted imaging (T2WI), contrast-enhanced T1-weighted imaging (CE-T1WI) of the tumour body and peritumour in combination with conventional factors in identifyingfibrous and non-fibrous meningiomas.Materials and Methods A total of 108 patients with pathologically confirmed meningiomas, including 30 fibrous meningiomas and 78 non-fibrous meningiomas, were enrolled and divided into a training set (n = 76) and a validation set (n = 32) in a ratio of 7 : 3. In the training set, 1132 radiomics features were extracted from the tumour body and peri-tumour of T2WI and CE-T1WI sequences, respectively. The optimal subset of radiomics features was identified through the maximal correlation minimal redundancy method (mRMR) and the least absolute shrinkage and selection operator (LASSO). Logistic regression (LR) machine learning method to construct imaging genomics models: T2WI tumour, T2WI peritumour, CE-T1WI tumour, CE-T1WI peritumour, (T2WI+CE-T1WI) tumour, (T2WI+CE-T1WI) peritumour and (T2WI+CE-T1WI) tumour+peritumour. The conventional factors with significance (P < 0.05) were screened by single-factor and multifactor logistic regression analysis methods. Then, the radiomics model with the best discriminatory efficacy was combined with the conventional factors to generate nomograms, and the diagnostic efficacy of the nomograms was evaluated by AUC, and the clinical efficacy of the model was assessed by the net benefit value of the decision curve analysis (DCA). the efficacy of this model was validated in the test set.Results The AUC values for the T2WI tumour, T2WI peritumour, CE-T1WI tumour, CE-T1WI peritumour, (T2WI+CE-T1WI) tumour, (T2WI+CE-T1WI) peritumour and (T2WI+CE-T1WI) tumour+peritumour radiomics models in the training set were 0.925, 0.803, 0.837, 0.872, 0.902, 0.894, 0.908, respectively. In the test set, the corresponding values were 0.652, 0.812, 0.700, 0.725, 0.700, 0.816, 0.729. The AUC of the T2WI tumour radiomics model for identifying fibrous and non-fibrous meningiomas was 0.92 in the training set and 0.65 in the test set. This appeared to be an overfitting. The (T2WI+CE-T1WI) peritumour radiomics model had the highest AUC value in the test set, and the model demonstrated the best diagnostic efficacy. The discriminatory efficacy of the established (T2WI+CE-T1WI) peri-tumour radiomics model was improved from the combined model with conventional factors (T2WI signal intensity and peri-tumour oedema), and its AUCs in the training set and test set were 0.89 and 0.82, respectively. The calibration curves showed good agreement between the predicted and actual probabilities of the model's preoperative identification of fibrous and non-fibrous meningiomas, DCA results show good clinical efficacy for this model.Conclusions Multimodal MRI radiomics models can effectively identify fibrous and non-fibrous meningiomas, and their discriminatory efficacy can be futher improved when combined with conventional factors.
[Keywords] meningioma;radiomics;typing;peri-tumour;magnetic resonance imaging

YANG Huimin1   LI Wenxin1   JIANG Xingyue2   WANG Qianqian2   ZHANG Juntao3   LIU Xinjiang1*  

1 Department of Radiology, Shanghai Pudong Hospital (Pudong Hospital of Fudan University), Shanghai 201399, China

2 Department of Radiology, the Affiliated Hospital of Binzhou Medical College, Binzhou 256603, China

3 GE Healthcare PDX GMS medical affairs, Shanghai 200203, China

Corresponding author: LIU X J, E-mail: lxj6513@163.com

Conflicts of interest   None.

Received  2024-12-30
Accepted  2025-07-04
DOI: 10.12015/issn.1674-8034.2025.08.008
DOI:10.12015/issn.1674-8034.2025.08.008.

[1]
TOLAND A, HUNTOON K, DAHIYA S M. Meningioma: A Pathology Perspective[J]. Neurosurgery, 2021, 89(1): 11-21. DOI: 10.1093/neuros/nyab001.
[2]
HUNTOON K, TOLAND A M S, DAHIYA S. Meningioma: A Review of Clinicopathological and Molecular Aspects[J/OL]. Front Oncol, 2020, 10: 579599 [2024-12-30]. https://pubmed.ncbi.nlm.nih.gov/33194703/. DOI: 10.3389/fonc.2020.579599.
[3]
KE C, CHEN H, LV X, et al. Differentiation Between Benign and Nonbenign Meningiomas by Using Texture Analysis From Multiparametric MRI[J]. J Magn Reson Imaging, 2020, 51(6): 1810-1820. DOI: 10.1002/jmri.26976.
[4]
HESS K, SPILLE D C, ADELI A, et al. Occurrence of Fibrotic Tumor Vessels in Grade I Meningiomas Is Strongly Associated with Vessel Density, Expression of VEGF, PlGF, IGFBP-3 and Tumor Recurrence[J/OL]. Cancers, 2020, 12(10): 3075 [2024-12-30]. https://pubmed.ncbi.nlm.nih.gov/33096816/. DOI: 10.3390/cancers12103075.
[5]
KIM L. A narrative review of targeted therapies in meningioma[J]. Chin Clin Oncol, 2020, 9(6): 76-76. DOI: 10.21037/cco-2020-mbt-01.
[6]
CORNIOLA M V, LEMÉE J M, BROI M DA, et al. Posterior fossa meningiomas: perioperative predictors of extent of resection, overall survival and progression-free survival[J]. Acta Neurochir (Wien), 2019, 161(5): 1003-1011. DOI: 10.1007/s00701-019-03862-z.
[7]
RUDIE J D, RAUSCHECKER A M, BRYAN R N, et al. Emerging Applications of Artificial Intelligence in Neuro-Oncology[J]. Radiology, 2019, 290(3): 607-618. DOI: 10.1148/radiol.2018181928.
[8]
MUSIGMANN M, AKKURT B H, KRÄHLING H, et al. Assessing preoperative risk of STR in skull meningiomas using MR radiomics and machine learning[J/OL]. Sci Rep, 2022, 12(1): 14043 [2024-12-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388514/. DOI: 10.1038/s41598-022-18458-4.
[9]
PARK C J, CHOI S H, EOM J, et al. An interpretable radiomics model to select patients for radiotherapy after surgery for WHO grade 2 meningiomas[J/OL]. Radiat Oncol, 2022, 17(1): 147 [2024-12-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9396861/. DOI: 10.1186/s13014-022-02090-7.
[10]
DUAN C, ZHOU X, WANG J, et al. A radiomics nomogram for predicting the meningioma grade based on enhanced T1WI images[J/OL]. Br J Radiol, 2022, 95(1137): 20220141 [2024-12-30]. https://doi.org/10.1259/bjr.20220141. DOI: 10.1259/bjr.20220141.
[11]
YANG L, XU P, ZHANG Y, et al. A deep learning radiomics model may help to improve the prediction performance of preoperative grading in meningioma[J]. Neuroradiology, 2022, 64(7): 1373-1382. DOI: 10.1007/s00234-022-02894-0.
[12]
SPECKTER H, RADULOVIC M, TRIVODALIEV K, et al. MRI radiomics in the prediction of the volumetric response in meningiomas after gamma knife radiosurgery[J]. J Neurooncol, 2022, 159(2): 281-291. DOI: 10.1007/s11060-022-04063-yMRI.
[13]
DUAN C, LI N, LI Y, et al. Prediction of progesterone receptor expression in high-grade meningioma by using radiomics based on enhanced T1WI[J/OL]. Clin Radiol, 2023, S0009x-9260(23)00271-4 [2024-12-30]. https://www.clinicalradiologyonline.net/article/S0009-9260(23)00271-4/abstract. DOI: 10.1016/j.crad.2023.06.006.
[14]
LIN Y, DAI P, LIN Q, et al. A predictive nomogram for atypical meningioma based on preoperative magnetic resonance imaging and routine blood tests[J/OL]. World Neurosurg, 2022, 163: e610-e616 [2024-12-30]. https://www.sciencedirect.com/science/article/abs/pii/S1878875022004727?via%3Dihub. DOI: 10.1016/j.wneu.2022.04.034.
[15]
ELSTER A D, CHALLA V R, GILBERT T H, et al. Meningiomas: MR and histopathologic features[J]. Radiology, 1989, 170(3): 857-862. DOI: 10.1148/radiology.170.3.2916043.
[16]
HUANG X Y, XIAO Y P, GUO R, et al. The Relationship Between MRI Scan Signal of Low Grade Meningiomas, Peritumoral Edema and its Pathological Subtypes[J]. Chin J CT & MRI, 2022, 20(12): 21-23. DOI: 10.3969/j.issn.1672-5131.2022.12.009.
[17]
HUANG R Y, BI W L, GRIFFITH B, et al. Imaging and diagnostic advances for intracranial meningiomas[J]. Neuro-Oncology, 2019, 21(Suppl 1): i44-i61. DOI: 10.1093/neuonc/noy143.
[18]
KRISHNAN V, MITTAL M, SINHA M. Imaging spectrum of meningiomas: a review of uncommon imaging appearances and their histopathological and prognostic significance[J]. Pol J Radiol, 2019, 84: 630-653. DOI: 10.5114/pjr.2019.92421.
[19]
WENG Y, REN Z. The relationship between VEGN, KI-67 antibody p53 and PTBE and post operative peritumoral edema of meningioma[J]. Stroke and Nervous Diseases, 2021, 28(3): 331-337. DOI: 10.3969/j.issn.1007-0478.2021.03.015.
[20]
CHENG Y L, XUE Y, SHI H Y, et al. Expression and significance of vascular endothelial growth factor and aquaporin 4 in meningiomas[J]. Chin J Clin Oncol Rehabil, 2021, 28(4): 392-395. DOI: 10.13445/j.cnki.cjcor.20210403.
[21]
LIYANAGE U A, MATHANGASINGHE Y, WIJERATHNE P K, et al. Location and Diameter of Intracranial Meningioma as Predictors of Peritumoral Brain Oedema and Mass Effect[J]. J Med Imaging Radiat Sci, 2020, 51(3): 411-416. DOI: 10.1016/j.jmir.2020.04.004.
[22]
SHIN C, KIM J M, CHEONG J H, et al. Association between tumor size and peritumoral brain edema in patients with convexity and parasagittal meningiomas[J/OL]. PLoS One, 2021, 16(6): e0252945 [2024-12-30]. https://pubmed.ncbi.nlm.nih.gov/34111188/. DOI: 10.1371/journal.pone.0252945.
[23]
HAN T, LIU X W, XU Z D, et al. T2WI and contrast enhanced T1W radiomics models for distinguishing fiberoblastic and non-fibroblanstic meningioma[J]. Chin J Med Imaging Technol, 2022, 38(12): 1791-1796. DOI: 10.13929/j.issn.1003-3289.2022.12.007.
[24]
SIEMPIS T, TSAKIRIS C, ALEXIOU G A, et al. Diagnostic performance of diffusion and perfusion MRI in differentiating high from low-grade meningiomas: A systematic review and meta-analysis[J/OL]. Clin Neurol Neurosurg, 2020, 190: 105643 [2024-12-30]. DOI: 10.1016/j.clineuro.2019.105643.
[25]
QIAO X J, KIM H G, WANG D J J, et al. Application of arterial spin labeling perfusion MRI to differentiate benign from malignant intracranial meningiomas[J]. Eur J Radiol, 2017, 97: 31-36. DOI: 10.1016/j.ejrad.2017.10.005.
[26]
KONG X, LUO Y, LI Y, et al. Preoperative prediction and histological stratification of intracranial solitary fibrous tumours by machine-learning models[J/OL]. Clin Radiol, 2023, 78(3): e204-e213 [2024-12-30]. https://www.clinicalradiologyonline.net/article/S0009-9260(22)00713-9/abstract. DOI: 10.1016/j.crad.2022.10.013.
[27]
ZHAO Z, NIE C, ZHAO L, et al. Multi-parametric MRI-based machine learning model for prediction of WHO grading in patients with meningiomas[J]. Eur Radiol, 2024, 34(4): 2468-2479. DOI: 10.1007/s00330-023-10252-8.
[28]
XIAO D, ZHAO Z, LIU J, et al. Diagnosis of invasive meningioma based on brain-tumor interface radiomics features on brain MR images: A multicenter study[J/OL]. Front Oncol, 2021, 11: 708040 [2024-12-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8422846/. DOI: 10.3389/fonc.2021.708040.
[29]
LI N, MO Y, HUANG C, et al. A clinical semantic and radiomics nomogram for predicting brain invasion in WHO Grade II meningioma based on tumor and tumor-to-brain interface features[J/OL]. Front Oncol, 2021, 11: 752158 [2024-12-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8570084/. DOI: 10.3389/fonc.2021.752158.
[30]
SUN K, ZHANG J, LIU Z, et al. A deep learning radiomics analysis for identifying sinus invasion in patients with meningioma before operation using tumor and peritumoral regions[J/OL]. Eur J Radiol, 2022, 149: 110187 [2024-12-30]. https://pubmed.ncbi.nlm.nih.gov/35183900/. DOI: 10.1016/j.ejrad.2022.110187.
[31]
JOO L, PARK J E, PARK S Y, et al. Extensive peritumoral edema and brain-to-tumor interface MRI features enable prediction of brain invasion in meningioma: development and validation[J]. Neuro Oncol, 2021, 23(2): 324-333. DOI: 10.1093/neuonc/noaa190.
[32]
HU J, ZHAO Y, LI M, et al. Machine learning-based radiomics analysis in predicting the meningioma grade using multiparametric MRI[J/OL]. Eur J Radiol, 2020, 131: 109251 [2024-12-30]. https://pubmed.ncbi.nlm.nih.gov/32916409/. DOI: 10.1016/j.ejrad.2020.109251.
[33]
HAN T, LIU XW, XU ZD, et al. Preoperative Prediction of Meningioma Subtype by Constructing a Clinical-Radiomics Model Nomogram Based on Magnetic Resonance Imaging[J/OL]. World Neurosurg, 2024, 181: e203-e213 [2024-12-30]. https://pubmed.ncbi.nlm.nih.gov/37813337/. DOI: 10.1016/j.wneu.2023.09.119.
[34]
NIU L, ZHOU X, DUAN C, et al. Differentiation Researches on the Meningioma Subtypes by Radiomics from Contrast-Enhanced Magnetic Resonance Imaging: A Preliminary Study[J/OL]. World Neurosurgery, 2019, 126: e646-e652 [2024-12-30]. https://pubmed.ncbi.nlm.nih.gov/30831287/. DOI: 10.1016/j.wneu.2019.02.109.
[35]
YU Y, FAN Y, WANG X, et al. Gd-EOB-DTPA-enhanced MRI radiomics to predict vessels encapsulating tumor clusters (VETC) and patient prognosis in hepatocellular carcinoma[J]. Eur Radiol, 2022, 32(2): 959-970. DOI: 10.1007/s00330-021-08250-9.
[36]
SUN R, LIMKIN E J, VAKALOPOULOU M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study[J]. Lancet Oncol, 2018, 19(9): 1180-1191. DOI: 10.1016/S1470-2045(18)30413-3.

PREV Construction and validation of a non-invasive differentiation model for glioblastoma and primary central nervous system lymphoma based on clinical-multimodal magnetic resonance imaging radiomics
NEXT Value of synthetic MRI based histogram features combined with short axis in diagnosis of lymph node metastasis in nasopharyngeal carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn