Share:
Share this content in WeChat
X
Clinical Article
Value of synthetic MRI based histogram features combined with short axis in diagnosis of lymph node metastasis in nasopharyngeal carcinoma
WEI Haoran  YANG Fan  LI Xiaolu  YU Xiaoduo  LI Lin  ZHAO Yanfeng  LIN Meng  ZHAO Xinming 

DOI:10.12015/issn.1674-8034.2025.08.009.


[Abstract] Objective To explore the value of synthetic MRI (SyMRI) based histogram analysis combined with short axis in diagnosing cervical lymph nodes metastasis (LNM) of nasopharyngeal carcinoma (NPC).Materials and Methods This study retrospectively analyzed 53 newly diagnosed NPC patients, and 377 cervical lymph nodes (LNs) with a short axis ≥ 4 mm (metastatic LNs: 297, non-metastatic LNs: 80). The nodes were randomly stratified into training (metastatic LNs: 208, non-metastatic LNs: 56) and test groups (metastatic LNs: 89, non-metastatic LNs: 24) at a 7∶3 ratio. Histogram parameters were extracted from T1, T2, and proton density (PD) maps of SyMRI and short axis was recorded for each LN. The areas under the curve (AUCs) of all histogram parameters were compared, and Spearman correlation coefficients (SCCs) between parameters were calculated. Parameters with higher diagnostic efficiency (AUC ≥ 0.617) and lower correlation (SCC < 0.8) were incorporated into logistic regression analysis for model construction. Receiver operating characteristic curve (ROC), area under the curve (AUC) and DeLong test were used to evaluate the performance of SyMRI model, size model and combined model in the diagnosis of cervical LNs. Then the nomogram and calibration curves were constructed.Results The SyMRI model, constructed using the T1-10th percentile, T1-variance, PD-10th percentile, and PD-minimum, achieved AUCs of 0.895 (training group) and 0.903 (test group), which were significantly higher than those of the short-axis model (AUCs: 0.824 and 0.797, respectively; both P < 0.05). The combined model demonstrated the highest diagnostic efficiency, with AUCs of 0.941 (training group) and 0.938 (test group), significantly outperforming both individual models (both P < 0.05).Conclusions SyMRI model based on histogram parameters can effectively differentiate metastatic from non-metastatic LNs, and the diagnostic performance improved further when combined with the short axis of nodes.
[Keywords] nasopharyngeal carcinoma;lymph node metastasis;magnetic resonance imaging;synthetic magnetic resonance imaging;histogram analysis;differential diagnosis

WEI Haoran   YANG Fan   LI Xiaolu   YU Xiaoduo   LI Lin   ZHAO Yanfeng   LIN Meng*   ZHAO Xinming  

Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China

Corresponding author: LIN M, E-mail: lm152@139.com

Conflicts of interest   None.

Received  2025-01-03
Accepted  2025-07-31
DOI: 10.12015/issn.1674-8034.2025.08.009
DOI:10.12015/issn.1674-8034.2025.08.009.

[1]
HO F C H, THAM I W K, EARNEST A, et al. Patterns of regional lymph node metastasis of nasopharyngeal carcinoma: a meta-analysis of clinical evidence[J/OL]. BMC Cancer, 2012, 12: 98 [2025-01-02]. https://pubmed.ncbi.nlm.nih.gov/22433671/. DOI: 10.1186/1471-2407-12-98.
[2]
WANG X S, HU C S, YING H M, et al. Patterns of lymph node metastasis from nasopharyngeal carcinoma based on the 2013 updated consensus guidelines for neck node levels[J]. Radiother Oncol, 2015, 115(1): 41-45. DOI: 10.1016/j.radonc.2015.02.017.
[3]
ZHOU X, OU X M, YANG Y Q, et al. Quantitative metastatic lymph node regions on magnetic resonance imaging are superior to AJCC N classification for the prognosis of nasopharyngeal carcinoma[J/OL]. J Oncol, 2018, 2018: 9172585 [2025-01-02]. https://pubmed.ncbi.nlm.nih.gov/30631357/. DOI: 10.1155/2018/9172585.
[4]
MA H L, LIANG S B, CUI C Y, et al. Prognostic significance of quantitative metastatic lymph node burden on magnetic resonance imaging in nasopharyngeal carcinoma: a retrospective study of 1224 patients from two centers[J/OL]. Radiother Oncol, 2020, 151: 40-46 [2025-01-02]. https://pubmed.ncbi.nlm.nih.gov/32679310/. DOI: 10.1016/j.radonc.2020.07.023.
[5]
LI H F, HUANG C, CHEN Q Y, et al. Lymph-node Epstein-Barr virus concentration in diagnosing cervical lymph-node metastasis in nasopharyngeal carcinoma[J]. Eur Arch Otorhinolaryngol, 2020, 277(9): 2513-2520. DOI: 10.1007/s00405-020-05937-5.
[6]
ZENG L, ZHANG Q, AO F, et al. Risk factors and distribution features of level IB lymph nodes metastasis in nasopharyngeal carcinoma[J]. Auris Nasus Larynx, 2019, 46(3): 457-464. DOI: 10.1016/j.anl.2018.10.012.
[7]
OU X M, MIAO Y B, WANG X S, et al. The feasibility analysis of omission of elective irradiation to level IB lymph nodes in low-risk nasopharyngeal carcinoma based on the 2013 updated consensus guideline for neck nodal levels[J/OL]. Radiat Oncol, 2017, 12(1): 137 [2025-01-02]. https://pubmed.ncbi.nlm.nih.gov/28821277/. DOI: 10.1186/s13014-017-0869-x.
[8]
LEE A W, NG W T, PAN J J, et al. International guideline for the delineation of the clinical target volumes (CTV) for nasopharyngeal carcinoma[J]. Radiother Oncol, 2018, 126(1): 25-36. DOI: 10.1016/j.radonc.2017.10.032.
[9]
LAN M, HUANG Y, CHEN C Y, et al. Prognostic value of cervical nodal necrosis in nasopharyngeal carcinoma: analysis of 1800 patients with positive cervical nodal metastasis at MR imaging[J]. Radiology, 2015, 276(2): 536-544. DOI: 10.1148/radiol.15141251.
[10]
LIU Y F, CHEN S H, DONG A N, et al. Nodal grouping in nasopharyngeal carcinoma: prognostic significance, N classification, and a marker for the identification of candidates for induction chemotherapy[J]. Eur Radiol, 2020, 30(4): 2115-2124. DOI: 10.1007/s00330-019-06537-6.
[11]
PENG H, CHEN L, TANG L L, et al. Significant value of 18F-FDG-PET/CT in diagnosing small cervical lymph node metastases in patients with nasopharyngeal carcinoma treated with intensity-modulated radiotherapy[J/OL]. Chin J Cancer, 2017, 36(1): 95 [2025-01-02]. https://pubmed.ncbi.nlm.nih.gov/29258597/. DOI: 10.1186/s40880-017-0265-9.
[12]
XIANG Y, ZHANG Q J, CHEN X, et al. Synthetic MRI and amide proton transfer-weighted MRI for differentiating between benign and malignant sinonasal lesions[J]. Eur Radiol, 2024, 34(10): 6820-6830. DOI: 10.1007/s00330-024-10696-6.
[13]
QU M M, FENG W, LIU X R, et al. Investigation of synthetic MRI with quantitative parameters for discriminating axillary lymph nodes status in invasive breast cancer[J/OL]. Eur J Radiol, 2024, 175: 111452 [2025-01-02]. https://pubmed.ncbi.nlm.nih.gov/38604092/. DOI: 10.1016/j.ejrad.2024.111452.
[14]
HWANG K P, ELSHAFEEY N A, KOTROTSOU A, et al. A radiomics model based on synthetic MRI acquisition for predicting neoadjuvant systemic treatment response in triple-negative breast cancer[J/OL]. Radiol Imaging Cancer, 2023, 5(4): e230009 [2025-01-02]. https://pubmed.ncbi.nlm.nih.gov/37505106/. DOI: 10.1148/rycan.230009.
[15]
HAGIWARA A, WARNTJES M, HORI M, et al. SyMRI of the brain: rapid quantification of relaxation rates and proton density, with synthetic MRI, automatic brain segmentation, and myelin measurement[J]. Invest Radiol, 2017, 52(10): 647-657. DOI: 10.1097/RLI.0000000000000365.
[16]
ZHANG Z X, LI S J, WANG W J, et al. Synthetic MRI for the quantitative and morphologic assessment of head and neck tumors: a preliminary study[J/OL]. Dentomaxillofac Radiol, 2023, 52(6): 20230103 [2025-01-02]. https://pubmed.ncbi.nlm.nih.gov/37427697/. DOI: 10.1259/dmfr.20230103.
[17]
LI M Q, FU W H, OUYANG L Y, et al. Potential clinical feasibility of synthetic MRI in bladder tumors: a comparative study with conventional MRI[J]. Quant Imaging Med Surg, 2023, 13(8): 5109-5118. DOI: 10.21037/qims-22-1419.
[18]
GOURTSOYIANNI S, DOUMOU G, PREZZI D, et al. Primary rectal cancer: repeatability of global and local-regional MR imaging texture features[J]. Radiology, 2017, 284(2): 552-561. DOI: 10.1148/radiol.2017161375.
[19]
JUST N. Improving tumour heterogeneity MRI assessment with histograms[J]. Br J Cancer, 2014, 111(12): 2205-2213. DOI: 10.1038/bjc.2014.512.
[20]
ZHAO L, LIANG M, SHI Z, et al. Preoperative volumetric synthetic magnetic resonance imaging of the primary tumor for a more accurate prediction of lymph node metastasis in rectal cancer[J]. Quant Imaging Med Surg, 2021, 11(5): 1805-1816. DOI: 10.21037/qims-20-659.
[21]
CHEN S X, YANG D, LIAO X Y, et al. Failure patterns of recurrence and metastasis after intensity-modulated radiotherapy in patients with nasopharyngeal carcinoma: results of a multicentric clinical study[J/OL]. Front Oncol, 2022, 11: 693199 [2025-01-02]. https://pubmed.ncbi.nlm.nih.gov/35223448/. DOI: 10.3389/fonc.2021.693199.
[22]
BOSSI P, CHAN A T, LICITRA L, et al. Nasopharyngeal carcinoma: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2021, 32(4): 452-465. DOI: 10.1016/j.annonc.2020.12.007.
[23]
YU X D, YANG F, LIU X, et al. Arterial spin labeling and diffusion-weighted imaging for identification of retropharyngeal lymph nodes in patients with nasopharyngeal carcinoma[J/OL]. Cancer Imaging, 2022, 22(1): 40 [2025-01-02]. https://pubmed.ncbi.nlm.nih.gov/35978445/. DOI: 10.1186/s40644-022-00480-4.
[24]
ZHANG G Y, LIU L Z, WEI W H, et al. Radiologic criteria of retropharyngeal lymph node metastasis in nasopharyngeal carcinoma treated with radiation therapy[J]. Radiology, 2010, 255(2): 605-612. DOI: 10.1148/radiol.10090289.
[25]
CHEN J, LUO J W, HE X, et al. Evaluation of contrast-enhanced computed tomography (CT) and magnetic resonance imaging (MRI) in the detection of retropharyngeal lymph node metastases in nasopharyngeal carcinoma patients[J/OL]. Cancer Manag Res, 2020, 12: 1733-1739 [2025-01-02]. https://pubmed.ncbi.nlm.nih.gov/32210614/. DOI: 10.2147/CMAR.S244034.
[26]
HUANG C L, CHEN Y, GUO R, et al. Prognostic value of MRI-determined cervical lymph node size in nasopharyngeal carcinoma[J]. Cancer Med, 2020, 9(19): 7100-7106. DOI: 10.1002/cam4.3392.
[27]
MIAO L, CAO Y, ZUO L J, et al. Predicting pathological complete response of neoadjuvant radiotherapy and targeted therapy for soft tissue sarcoma by whole-tumor texture analysis of multisequence MRI imaging[J]. Eur Radiol, 2023, 33(6): 3984-3994. DOI: 10.1007/s00330-022-09362-6.
[28]
MENG T B, HE N, HE H Q, et al. The diagnostic performance of quantitative mapping in breast cancer patients: a preliminary study using synthetic MRI[J/OL]. Cancer Imaging, 2020, 20(1): 88 [2025-01-02]. https://pubmed.ncbi.nlm.nih.gov/33317609/. DOI: 10.1186/s40644-020-00365-4.
[29]
MEZER A, ROKEM A, BERMAN S, et al. Evaluating quantitative proton-density-mapping methods[J]. Hum Brain Mapp, 2016, 37(10): 3623-3635. DOI: 10.1002/hbm.23264.
[30]
WANG P, HU S D, WANG X Y, et al. Synthetic MRI in differentiating benign from metastatic retropharyngeal lymph node: combination with diffusion-weighted imaging[J]. Eur Radiol, 2023, 33(1): 152-161. DOI: 10.1007/s00330-022-09027-4.
[31]
GIACOMINI C P, JEFFREY R B, SHIN L K. Ultrasonographic evaluation of malignant and normal cervical lymph nodes[J]. Semin Ultrasound CT MR, 2013, 34(3): 236-247. DOI: 10.1053/j.sult.2013.04.003.
[32]
YANG F, LI Y J, LI X L, et al. The utility of texture analysis based on quantitative synthetic magnetic resonance imaging in nasopharyngeal carcinoma: a preliminary study[J/OL]. BMC Med Imaging, 2023, 23(1): 15 [2025-01-02]. https://pubmed.ncbi.nlm.nih.gov/36698156/. DOI: 10.1186/s12880-023-00968-w.
[33]
GAO W B, ZHANG S Q, GUO J X, et al. Investigation of synthetic relaxometry and diffusion measures in the differentiation of benign and malignant breast lesions as compared to BI-RADS[J]. J Magn Reson Imaging, 2021, 53(4): 1118-1127. DOI: 10.1002/jmri.27435.
[34]
GE X, MA Y, HUANG X, et al. Distinguishment between high-grade gliomas and solitary brain metastases in peritumoural oedema: quantitative analysis using synthetic MRI at 3 T[J/OL]. Clin Radiol, 2024, 79(3): e361-e368 [2025-01-02]. https://pubmed.ncbi.nlm.nih.gov/38103981/. DOI: 10.1016/j.crad.2023.10.026.

PREV Study on value of intra-tumoral and peri-tumoral features of multimodal MRI radiomics in distinguishing fibrous from nonfibrous meningiomas
NEXT Predictive value of electrocardiographic Q waves and CMR myocardial strain for microcirculatory obstruction after PCI treatment in patients with acute ST-elevation myocardial infarction
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn