Share:
Share this content in WeChat
X
Clinical Article
The diagnostic value of PI-RADS v2.1 score based on biparametric magnetic resonance imaging combined with PSAD for transitional zone prostate cancer
CHEN Weijuan  ZHAO Fei  LI Xinhong  WANG Zhigang  SU Beibei  MA Ni 

DOI:10.12015/issn.1674-8034.2025.08.014.


[Abstract] Objective To explore the diagnostic value of prostate imaging reporting and data system version 2.1 (PI-RADS v2.1) score based on biparametric magnetic resonance imaging (bpMRI) combined with prostate specific antigen density (PSAD) for transitional zone prostate cancer (TZPCa).Materials and Methods A retrospective analysis was conducted on 115 patients with prostate diseases confirmed by pathology, and patients were divided into TZPCa group and benign prostatic hyperplasia (BPH) groups. The MRI images were scored according to PI-RADS v2.1, univariate and multivariate logistic regression analyses were performed on the patients' age, prostate volume (PV), total prostate specific antigen (tPSA), the ratio of free PSA to tPSA (fPSA/tPSA), PSAD and PI-RADS v2.1 score. The diagnostic efficacy of PI-RADS V2.1, PSAD and combined diagnosis for TZPCa was analyzed by receiver operating characteristic (ROC) curve , and the area under the curve (AUC) was calculated.Results tPSA, fPSA/tPSA, PSAD, and PI-RADS v2.1 scores were statistically significant between TZPCa group and BPH group (P < 0.05); PI-RADS v2.1 score and PSAD were independent predictors of TZPCa; the AUC values of PI-RADS v2.1 score, PSAD and combined model for diagnosing TZPCa are 0.916 [95% confidence interval (CI): 0.864 to 1.000], 0.812 (95% CI: 0.702 to 0.921), and 0.952 (95% CI: 0.903 to 1.000) respectively. The combined model have the best diagnostic performance.Conclusions The combination of PI-RADS v2.1 score and PSAD improves the diagnostic value for TZPCa and reduces unnecessary biopsy.
[Keywords] prostate cancer;magnetic resonance imaging;prostate specific antigen density;prostate imaging reporting and data system

CHEN Weijuan1   ZHAO Fei1*   LI Xinhong2   WANG Zhigang1   SU Beibei1   MA Ni1  

1 Department of Imaging, General Hospital of the Ordnance Industry, Xi'an, 710065, China

2 Department of Oncology, General Hospital of the Ordnance Industry, Xi'an, 710065, China

Corresponding author: ZHAO F, E-mail: zhaocwj2021@163.com

Conflicts of interest   None.

Received  2025-03-13
Accepted  2025-07-31
DOI: 10.12015/issn.1674-8034.2025.08.014
DOI:10.12015/issn.1674-8034.2025.08.014.

[1]
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
[2]
VAN POPPEL H, ROOBOL M J, CHANDRAN A. Early detection of prostate cancer in the European union: combining forces with PRAISE-U[J]. Eur Urol, 2023, 84(6): 519-522. DOI: 10.1016/j.eururo.2023.08.002.
[3]
DE VOS I I, MEERTENS A, HOGENHOUT R, et al. A detailed evaluation of the effect of prostate-specific antigen-based screening on morbidity and mortality of prostate cancer: 21-year follow-up results of the Rotterdam section of the European randomised study of screening for prostate cancer[J]. Eur Urol, 2023, 84(4): 426-434. DOI: 10.1016/j.eururo.2023.03.016.
[4]
LEE M S, KIM Y J, MOON M H, et al. Transitional zone prostate cancer: Performance of texture-based machine learning and image-based deep learning[J/OL]. Medicine (Baltimore), 2023, 102(39): e35039 [2025-03-12]. https://pubmed.ncbi.nlm.nih.gov/37773806/. DOI: 10.1097/MD.0000000000035039.
[5]
ZHANG Y, DONG Z, LIU B C, et al. Diagnosis of prostate imaging reporting and data system version 2.1 combined with PSAD for clinically significant prostate cancer in the gray zone of prostate-specific antigen[J]. Chin J Med Imag, 2024, 32(5): 492-498. DOI: 10.3969/j.issn.1005-5185.2024.05.015.
[6]
MICHAELY H J, ARINGHIERI G, CIONI D, et al. Current value of biparametric prostate MRI with machine-learning or deep-learning in the detection, grading, and characterization of prostate cancer: a systematic review[J/OL]. Diagnostics (Basel), 2022, 12(4): 799 [2025-03-12]. https://pubmed.ncbi.nlm.nih.gov/35453847/. DOI: 10.3390/diagnostics12040799.
[7]
HU B B, ZHANG H L, ZHANG Y Y, et al. A nomogram based on biparametric magnetic resonance imaging for detection of clinically significant prostate cancer in biopsy-naïve patients[J/OL]. Cancer Imaging, 2023, 23(1): 82 [2025-03-12]. https://pubmed.ncbi.nlm.nih.gov/37667393/. DOI: 10.1186/s40644-023-00606-2.
[8]
GONG L X, XU M, FANG M J, et al. Noninvasive prediction of high-grade prostate cancer via biparametric MRI radiomics[J]. J Magn Reson Imaging, 2020, 52(4): 1102-1109. DOI: 10.1002/jmri.27132.
[9]
WANG H H, GAO G, HE Q, et al. Comparison of scores between PI-RADS v2.1 and PI-RADS v2 based on prostate slice-by-slice pathology[J]. Chin J Magn Reson Imag, 2022, 13(4): 120-123. DOI: 10.12015/issn.1674-8034.2022.04.023.
[10]
CHAI J G, LI Y H, KE C X. Development of novel nomograms for predicting prostate cancer in biopsy-naive patients with PSA < 10 ng/ml and PI-RADS≤3 lesions[J/OL]. Front Oncol, 2025, 14: 1500010 [2025-03-12]. https://pubmed.ncbi.nlm.nih.gov/39839793/. DOI: 10.3389/fonc.2024.1500010.
[11]
DENIFFEL D, HEALY G M, DONG X, et al. Avoiding unnecessary biopsy: MRI-based risk models versus a PI-RADS and PSA density strategy for clinically significant prostate cancer[J]. Radiology, 2021, 300(2): 369-379. DOI: 10.1148/radiol.2021204112.
[12]
REN L, CHEN Y L, LIU Z X, et al. Integration of PSAd and multiparametric MRI to forecast biopsy outcomes in biopsy-naïve patients with PSA 4~20 ng/ml[J/OL]. Front Oncol, 2024, 14: 1413953 [2025-03-12]. https://pubmed.ncbi.nlm.nih.gov/39026982/. DOI: 10.3389/fonc.2024.1413953.
[13]
CHEN Z Y, ZHANG Y, ZHOU D J, et al. Value of prostate specific antigen density in clinical decision-making for prostate imaging reporting and data system v2 category 3 lesions[J]. Chin J Med Imag Technol, 2018, 34(6): 906-910. DOI: 10.13929/j.1003-3289.201712009.
[14]
LI W, XU H B, SHANG W W, et al. Comparisons of three scoring systems based on biparametric magnetic resonance imaging for prediction of clinically significant prostate cancer[J]. Prostate Int, 2024, 12(4): 201-206. DOI: 10.1016/j.prnil.2024.08.002.
[15]
WALLSTRÖM J, GETERUD K, KOHESTANI K, et al. Bi- or multiparametric MRI in a sequential screening program for prostate cancer with PSA followed by MRI Results from the Göteborg prostate cancer screening 2 trial[J]. Eur Radiol, 2021, 31(11): 8692-8702. DOI: 10.1007/s00330-021-07907-9.
[16]
GREER M D, SHIH J H, LAY N, et al. Validation of the dominant sequence paradigm and role of dynamic contrast-enhanced imaging in PI-RADS version 2[J]. Radiology, 2017, 285(3): 859-869. DOI: 10.1148/radiol.2017161316.
[17]
CUOCOLO R, VERDE F, PONSIGLIONE A, et al. Clinically significant prostate cancer detection with biparametric MRI: a systematic review and meta-analysis[J]. AJR Am J Roentgenol, 2021, 216(3): 608-621. DOI: 10.2214/AJR.20.23219.
[18]
TURKBEY B, ROSENKRANTZ A B, HAIDER M A, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2[J]. Eur Urol, 2019, 76(3): 340-351. DOI: 10.1016/j.eururo.2019.02.033.
[19]
KASIVISVANATHAN V, RANNIKKO A S, BORGHI M, et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis[J]. N Engl J Med, 2018, 378(19): 1767-1777. DOI: 10.1056/NEJMoa1801993.
[20]
VENDERINK W, VAN LUIJTELAAR A, BOMERS J G R, et al. Results of targeted biopsy in men with magnetic resonance imaging lesions classified equivocal, likely or highly likely to be clinically significant prostate cancer[J]. Eur Urol, 2018, 73(3): 353-360. DOI: 10.1016/j.eururo.2017.02.021.
[21]
JIANG A M, ZHAO X X. Study of PSAD and PI-RADS V2.1 score in multifocal and clinically significant prostate cancer[J]. J Clin Radiol, 2021, 40(6): 1166-1171. DOI: 10.13437/j.cnki.jcr.2021.06.028.
[22]
YUAN C W, LI D R, LI Z H, et al. Application of dynamic contrast enhanced status in multiparametric magnetic resonance imaging for prostatic cancer with PI-RADS 4 lesion[J]. J Peking Univ Health Sci, 2023, 55(5): 838-842. DOI: 10.19723/j.issn.1671-167X.2023.05.010.
[23]
ZHAO Y Y, FANG C, WU S L, et al. Prediction and risk assessment of benign and malignant prostate lesions based on Bp-MRI radiomics[J]. Chin J Magn Reson Imag, 2022, 13(8): 43-47. DOI: 10.12015/issn.1674-8034.2022.08.008.
[24]
CUSSENOT O, RENARD-PENNA R, MONTAGNE S, et al. Clinical performance of magnetic resonance imaging and biomarkers for prostate cancer diagnosis in men at high genetic risk[J]. BJU Int, 2023, 131(6): 745-754. DOI: 10.1111/bju.15968.
[25]
BAI X J, JIANG Y M, ZHANG X W, et al. The value of prostate-specific antigen-related indexes and imaging screening in the diagnosis of prostate cancer[J]. Cancer Manag Res, 2020, 12: 6821-6826. DOI: 10.2147/CMAR.S257769.
[26]
WASHINO S, OKOCHI T, SAITO K, et al. Combination of prostate imaging reporting and data system (PI-RADS) score and prostate-specific antigen (PSA) density predicts biopsy outcome in prostate biopsy naïve patients[J]. BJU Int, 2017, 119(2): 225-233. DOI: 10.1111/bju.13465.
[27]
YUSIM I, KRENAWI M, MAZOR E, et al. The use of prostate specific antigen density to predict clinically significant prostate cancer[J/OL]. Sci Rep, 2020, 10(1): 20015 [2025-03-12]. https://pubmed.ncbi.nlm.nih.gov/33203873/. DOI: 10.1038/s41598-020-76786-9.
[28]
XIN J Y, ZHANG W X, HAN Y, et al. Study on the diagnostic value of combined models based on PSAD and mp-MRI in clinically significant prostate cancer[J]. Chin J Magn Reson Imag, 2025, 16(2): 72-76, 141. DOI: 10.12015/issn.1674-8034.2025.02.011.
[29]
WANG Z B, WEI C G, ZHANG Y Y, et al. The role of psa density among PI-RADS v2.1 categories to avoid an unnecessary transition zone biopsy in patients with psa 4-20 ng/mL[J/OL]. Biomed Res Int, 2021, 2021: 3995789 [2025-03-12]. https://pubmed.ncbi.nlm.nih.gov/34671673/. DOI: 10.1155/2021/3995789.
[30]
LIN Y S, ZHANG L, ZHENG P X, et al. Evaluation of the value of PI-RADS v2.1 and multiparametric MRI-derived biomarkers in detecting clinically significant prostate cancer in transition zone[J]. Chin J Magn Reson Imag, 2024, 15(10): 109-114. DOI: 10.12015/issn.1674-8034.2024.10.019.
[31]
WANG Y F, WEI C G, ZHANG Y Y, et al. Diagnostic performance of biparametric MRI combined with PSAD in the diagnosis of clinically significant prostate cancer based on PI-RADS v2.1[J]. Radiol Pract, 2021, 36(10): 1253-1258. DOI: 10.13609/j.cnki.1000-0313.2021.10.011.
[32]
WEN J, LIU W, SHEN X C, et al. PI-RADS v2.1 and PSAD for the prediction of clinically significant prostate cancer among patients with PSA levels of 4-10 ng/ml[J/OL]. Sci Rep, 2024, 14(1): 6570 [2025-03-12]. https://pubmed.ncbi.nlm.nih.gov/38503972/. DOI: 10.1038/s41598-024-57337-y.

PREV Study on the value of MRI multiple b-value DWI quantitative parameters in predicting lymphovascular invasion of gastric cancer
NEXT Analysis of the correlation between bone marrow fat content of human lumbar spine and aging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn