Share:
Share this content in WeChat
X
Clinical Article
Analysis of the correlation between bone marrow fat content of human lumbar spine and aging
ZHAO Qing  HU Chunhong  TAO Jian  ZHANG Yue  SHAN Ben 

DOI:10.12015/issn.1674-8034.2025.08.015.


[Abstract] Objective To investigate the correlation between bone marrow fat fraction (FF) of human lumbar spine and aging.Materials and Methods A prospective cohort of 135 volunteers, ranging in age from 30 to 79 years, were recruited to measure the lumbar FF using IDEAL-IQ technology based on magnetic resonance imaging. The subjects were divided into 30+ to 70+ groups according to the interval of 10 years old. The differences and trends of L3 and average FF of lumbar spine (FFL3 & FFA) in different age groups were analyzed. The correlation between bone marrow fat content of lumbar vertebrae and age was analyzed.Results For all subjects, there was no significant difference in age, L1-L5 and average FF between males and females (P > 0.05). After age segmentation, both FFL3 and FFA showed an increasing trend with age in both males and females (P < 0.05). The differences between male and female groups were not statistically significant in the 50+ and 70+ groups (P > 0.05). In 30+ group and 40+ group, FFL3 and FFA of the male were significantly higher than female; while in 60+ group, the male was significantly lower (P < 0.05). Compared to the previous age group, FFL3 and FFA of male subjects increased rapidly after 70 years of age (P < 0.05). Women, on the other hand, grew rapidly after the age of 50 (P < 0.05) and slowed down after the age of 70 (P > 0.05). Both FFL3 and FFA were moderately linearly positively correlated with aging in males (r = 0.516, 0.553, respectively, P < 0.05) and strongly correlated with aging in females (r = 0.777, 0.780, respectively, P < 0.001).Conclusions The bone marrow fat content of male and female lumbar spine show different trends with aging, but both are closely related to it, with rapid growth observed in females after the age of 50 and males after the age of 70.
[Keywords] lumbar spine;bone marrow;fat;aging;correlation;magnetic resonance imaging;IDEAL-IQ sequence

ZHAO Qing1   HU Chunhong2   TAO Jian1   ZHANG Yue3   SHAN Ben1, 3*  

1 Department of Radiology, the Affiliated Huaian Hospital of Xuzhou Medical University/Huaian Second People's Hospital, Huaian 223001, China

2 Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China

3 Department of Radiology, Huaian Hospital Affiliated to Yangzhou University, the Fifth People's Hospital of Huaian, Huaian 223300, China

Corresponding author: SHAN B, E-mail: samben1984@yzu.edu.cn

Conflicts of interest   None.

Received  2025-03-19
Accepted  2025-07-31
DOI: 10.12015/issn.1674-8034.2025.08.015
DOI:10.12015/issn.1674-8034.2025.08.015.

[1]
LIN H, SOHN J, SHEN H, et al. Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing[J]. Biomaterials, 2019, 203: 96-110. DOI: 10.1016/j.biomaterials.2018.06.026.
[2]
HERNLUND E, SVEDBOM A, IVERGARD M, et al. Osteoporosis in the European union: medical management, epidemiology and economic burden. a report prepared in collaboration with the international osteoporosis foundation (IOF) and the European federation of pharmaceutical industry associations (EFPIA)[J/OL]. Arch Osteoporos, 2013, 8(1): 136 [2025-03-18]. https://pubmed.ncbi.nlm.nih.gov/24113837/. DOI: 10.1007/s11657-013-0136-1.
[3]
TONG L P, CHEN D. Senescence of bone marrow fat cells: A new clue for glucocorticoid-induced bone deterioration[J]. Cell Metab, 2023, 35(4): 551-553. DOI: 10.1016/j.cmet.2023.03.009.
[4]
WANG S, LIU S, TU Y, et al. Relationship between bone marrow fat fraction and risk of anaemia in patients with Crohn's disease: a cross-sectional study based on chemical shift-encoded magnetic resonance imaging (CSE-MRI)[J/OL]. Clin Radiol, 2025, 87: 106988 [2025-03-18]. https://pubmed.ncbi.nlm.nih.gov/40618680/. DOI: 10.1016/j.crad.2025.106988.
[5]
ZHAO C L, MA Q, HOU X M, et al. Influence of sleeve gastrectomy on bone marrow fat in metabolic syndrome patients with and without diabetes: a prospective follow-up study[J/OL]. Hormones (Athens), 2025 [2025-03-18]. https://pubmed.ncbi.nlm.nih.gov/40266536/. DOI: 10.1007/s42000-025-00660-4.
[6]
MUSLU Y, TAMADA D, ROBERTS N T, et al. Free-breathing, fat-corrected T1 mapping of the liver with stack-of-stars MRI, and joint estimation of T1, PDFF, R2*, and B1 +[J]. Magn Reson Med, 2024, 92(5): 1913-1932. DOI: 10.1002/mrm.30182.
[7]
MENESES J P, ARRIETA C, DELLA MAGGIORA G, et al. Liver PDFF estimation using a multi-decoder water-fat separation neural network with a reduced number of echoes[J]. Eur Radiol, 2023, 33(9): 6557-6568. DOI: 10.1007/s00330-023-09576-2.
[8]
KIM J W, LEE C H, YANG Z P, et al. The spectrum of magnetic resonance imaging proton density fat fraction (MRI-PDFF), magnetic resonance spectroscopy (MRS), and two different histopathologic methods (artificial intelligence vs. pathologist) in quantifying hepatic steatosis[J]. Quant Imaging Med Surg, 2022, 12(11): 5251-5262. DOI: 10.21037/qims-22-393.
[9]
ROBERTS N T, TAMADA D, MUSLU Y, et al. Confounder-corrected T1 mapping in the liver through simultaneous estimation of T1, PDFF, R2*, and B1 + in a single breath-hold acquisition[J]. Magn Reson Med, 2023, 89(6): 2186-2203. DOI: 10.1002/mrm.29590.
[10]
KARÇAALTINCABA M, IDILMAN I, CELIK A. Focal sparing of iron and fat in liver tissue in patients with hemosiderosis: diagnosis with combination of R2* relaxometry and proton density fat fraction calculation by MRI[J]. Diagn Interv Radiol, 2011, 17(4): 323-327. DOI: 10.4261/1305-3825.DIR.4134-10.1.
[11]
LIAU J, SHIEHMORTEZA M, GIRARD O M, et al. Evaluation of MRI fat fraction in the liver and spine pre and post SPIO infusion[J]. Magn Reson Imaging, 2013, 31(6): 1012-1016. DOI: 10.1016/j.mri.2013.01.016.
[12]
HAYASHI T, YANO S, SHIBUKAWA S, et al. Impact of arm position on vertebral bone marrow proton density fat fraction in chemical-shift-encoded magnetic resonance imaging: a preliminary study[J]. Quant Imaging Med Surg, 2022, 12(11): 5263-5270. DOI: 10.21037/qims-22-396.
[13]
LEE H W, LEE J Y, LEE J Y, et al. Use of two-point and six-point Dixon MRI for fat fraction analysis in the lumbar vertebral bodies and paraspinal muscles in healthy dogs: comparison with magnetic resonance spectroscopy[J/OL]. Front Vet Sci, 2024, 11: 1412552 [2025-03-18]. https://pubmed.ncbi.nlm.nih.gov/39386243/. DOI: 10.3389/fvets.2024.1412552.
[14]
CHEN F S, HUANG Y Y, GUO A N, et al. Associations between vertebral bone marrow fat and sagittal spine alignment as assessed by chemical shift-encoding-based water-fat MRI[J/OL]. J Orthop Surg Res, 2023, 18(1): 460 [2025-03-18]. https://pubmed.ncbi.nlm.nih.gov/37370128/. DOI: 10.1186/s13018-023-03944-w.
[15]
WOODS G N, EWING S K, SIGURDSSON S, et al. Greater bone marrow adiposity predicts bone loss in older women[J]. J Bone Miner Res, 2020, 35(2): 326-332. DOI: 10.1002/jbmr.3895.
[16]
LI Y, ZANG X J. Evaluation of fat content in vertebral bone marrow of patients with lumbar diseases by magnetic resonance q-Dixon (fat quantification)[J]. J Imag Res Med Appl, 2024, 8(21): 91-93. DOI: 10.3969/j.issn.2096-3807.2024.21.028.
[17]
YE P P, HUANG Y Y, CHEN S Q, et al. Research value of IDEAL-IQ sequence on fat content of adult lumbar bone marrow[J]. Mod Pract Med, 2024, 36(3): 375-378. DOI: 10.3969/j.issn.1671-0800.2024.03.027.
[18]
WU Y P. Correlation analysis of bone marrow fat fraction, lumbar muscle index and bone mineral density in patients with osteoporosis[J]. J Imag Res Med Appl, 2023, 7(15): 56-58. DOI: 10.3969/j.issn.2096-3807.2023.15.018.
[19]
LIU P F, LIAN Z G, LI K M. Analysis of diagnostic value of lumbar spine fat fraction combined with R2* value for osteoporosis[J]. Chin J CT MRI, 2024, 22(7): 169-171. DOI: 10.3969/j.issn.1672-5131.2024.07.053.
[20]
NAIK S, JAIN M, BHOI S K, et al. Correlation between vertebral marrow fat fraction in MRI using DIXON technique and BMD in DXA in patients of suspected osteoporosis[J]. Indian J Radiol Imaging, 2023, 34(2): 239-245. DOI: 10.1055/s-0043-1776883.
[21]
LALAYIANNIS A D, CRABTREE N J, FEWTRELL M, et al. Assessing bone mineralisation in children with chronic kidney disease: what clinical and research tools are available[J]. Pediatr Nephrol, 2020, 35(6): 937-957. DOI: 10.1007/s00467-019-04271-1.
[22]
GASSERT F G, KRANZ J, GASSERT F T, et al. Longitudinal MR-based proton-density fat fraction (PDFF) and T2* for the assessment of associations between bone marrow changes and myelotoxic chemotherapy[J]. Eur Radiol, 2024, 34(4): 2437-2444. DOI: 10.1007/s00330-023-10189-y.
[23]
LEE H, PARK S, KWACK K S, et al. CT and MR for bone mineral density and trabecular bone score assessment in osteoporosis evaluation[J/OL]. Sci Rep, 2023, 13(1): 16574 [2025-03-18]. https://pubmed.ncbi.nlm.nih.gov/37789069/. DOI: 10.1038/s41598-023-43850-z.
[24]
TANG R, TANG G Y, HUA T, et al. mDIXON-Quant technique diagnostic accuracy for assessing bone mineral density in male adult population[J/OL]. BMC Musculoskelet Disord, 2023, 24(1): 125 [2025-03-18]. https://pubmed.ncbi.nlm.nih.gov/36788513/. DOI: 10.1186/s12891-023-06225-z.
[25]
ZHOU F, SHENG B, LV F R. Quantitative analysis of vertebral fat fraction and R2* in osteoporosis using IDEAL-IQ sequence[J/OL]. BMC Musculoskelet Disord, 2023, 24(1): 721 [2025-03-18]. https://pubmed.ncbi.nlm.nih.gov/37697287/. DOI: 10.1186/s12891-023-06846-4.
[26]
ZHANG W, LIAO R P, YE H Y, et al. Correlation study of age, gender and lumbar vertebral marrow fat in adults based on MRI iterative decomposition of water and fat with echo asymmetry and least-squares estimation image quantitation imaging technique[J]. Chin J Spine Spinal Cord, 2024, 34(2): 121-127. DOI: 10.3969/j.issn.1004-406X.2024.02.02.
[27]
TIAN X Y, ZHANG B C. The association between sex hormones and bone mineral density in US females[J/OL]. Sci Rep, 2025, 15(1): 5546 [2025-03-18]. https://pubmed.ncbi.nlm.nih.gov/39953073/. DOI: 10.1038/s41598-025-89985-z.
[28]
ERDÉLYI A, PÁLFI E, TŰŰ L, et al. The importance of nutrition in menopause and perimenopause-a review[J/OL]. Nutrients, 2023, 16(1): 27 [2025-03-18]. https://pubmed.ncbi.nlm.nih.gov/38201856/. DOI: 10.3390/nu16010027.
[29]
MARRIOTT R J, MURRAY K, ADAMS R J, et al. Factors associated with circulating sex hormones in men: individual participant data meta-analyses[J]. Ann Intern Med, 2023, 176(9): 1221-1234. DOI: 10.7326/M23-0342.
[30]
LI F X, FENG Y C, LI X, et al. The mechanism of oxytocin and its receptors in regulating cells in bone metabolism[J/OL]. Front Pharmacol, 2023, 14: 1171732 [2025-03-18]. https://pubmed.ncbi.nlm.nih.gov/37229246/. DOI: 10.3389/fphar.2023.1171732.
[31]
GRIGORYAN S, CLINES G A. Hormonal control of bone architecture throughout the lifespan: implications for fracture prediction and prevention[J]. Endocr Pract, 2024, 30(7): 687-694. DOI: 10.1016/j.eprac.2024.04.006.
[32]
ONDRUSOVA M, SPANIKOVA B, SEVCIKOVA K, et al. Testosterone deficiency and bone metabolism damage in testicular cancer survivors[J]. Am J Mens Health, 2018, 12(3): 628-633. DOI: 10.1177/1557988316661986.
[33]
GAN X L, LIU S B, LIANG K L. microRNA-19b-3p promotes cell proliferation and osteogenic differentiation of BMSCs by interacting with lncRNA H19[J/OL]. BMC Med Genet, 2020, 21(1): 11 [2025-03-18]. https://pubmed.ncbi.nlm.nih.gov/31918667/. DOI: 10.1186/s12881-020-0948-y.
[34]
CHEN J F, LIN P W, TSAI Y R, et al. Androgens and androgen receptor actions on bone health and disease: from androgen deficiency to androgen therapy[J/OL]. Cells, 2019, 8(11): 1318 [2025-03-18]. https://pubmed.ncbi.nlm.nih.gov/31731497/. DOI: 10.3390/cells8111318.
[35]
MITCHELL E, CHAPMAN M S, WILLIAMS N, et al. Clonal dynamics of haematopoiesis across the human lifespan[J]. Nature, 2022, 606(7913): 343-350. DOI: 10.1038/s41586-022-04786-y.
[36]
MORRIS D M, WANG C J, PAPANASTASIOU G, et al. A novel deep learning method for large-scale analysis of bone marrow adiposity using UK Biobank Dixon MRI data[J]. Comput Struct Biotechnol J, 2023, 24: 89-104. DOI: 10.1016/j.csbj.2023.12.029.

PREV The diagnostic value of PI-RADS v2.1 score based on biparametric magnetic resonance imaging combined with PSAD for transitional zone prostate cancer
NEXT Analysis of the diagnostic efficacy of multi-sequence optimized VBQs and QCT for osteoporosis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn