Share:
Share this content in WeChat
X
Technical Article
Non-contrast magnetic resonance coronary angiography based on fast 3D and R-wave correction techniques: A comparative study with computed tomography angiography
CHEN Yufeng  CHEN Zhentao  HU Chunfeng 

DOI:10.12015/issn.1674-8034.2025.08.019.


[Abstract] Objective To investigate the image quality, morphological evaluation, and diagnostic accuracy of 3.0 T non-contrast magnetic resonance coronary angiography (MRCA) using Fast 3D and R-wave correction techniques in patients with coronary artery disease (CAD) for detecting ≥ 50% coronary stenosis.Materials and Methods Forty-six CAD patients were prospectively enrolled and underwent 3.0 T MRCA within 48 to 72 hours after coronary computed tomography angiography (CCTA). The MRCA protocol incorporated R-wave correction (trigger interval ± 15%) and Fast 3D. Two radiologists independently assessed MRCA image quality (5-point scale) and coronary stenosis. Generalized Estimating Equations (GEE) analyzed image quality across eight coronary segments. Bland-Altman analysis evaluated vessel length consistency between MRCA and CCTA, while receiver operating characteristic curves assessed diagnostic performance for ≥ 50% stenosis.Results The MRCA examination success rate was 89.13% (41/46), with an excellent image rate of 65.85%. Image quality scores for proximal right coronary artery (RCA) and left anterior descending coronary artery (LAD) segments were superior to distal segments (P < 0.05). Higher heart rate (≥ 70 bpm) and body mass index (BMI) (≥ 25 kg/m2) significantly reduced image quality (P < 0.05). MRCA and CCTA showed good consistency in vessel length (95% limits of agreement: -5.94 to -0.68; outlier rate < 5%), except for left circumflex branch (LCX) (9.76% outlier rate). For ≥ 50% stenosis, MRCA demonstrated a sensitivity of 81.08%, specificity of 95.29%, and area under the curve of 0.889 (95% confidence interval: 0.819 to 0.938).Conclusions 3.0 T MRCA with Fast 3D and R-wave correction techniques demonstrated high examination success rate and excellent image quality in CAD patients. Morphologically, the display of vessel length is in good agreement with CCTA in RCA and LAD. It can serve as an effective non-invasive screening tool for coronary artery assessment, particularly suitable for patients with contrast agent contraindications or requiring radiation avoidance.
[Keywords] coronary artery disease;magnetic resonance imaging;magnetic resonance coronary angiography;Fast 3D technique;R-wave correction technique;image quality;diagnostic performance​

CHEN Yufeng1, 2   CHEN Zhentao3   HU Chunfeng1*  

1 Department of Radiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China

2 Department of Radiology, Xuzhou Renci Hospital, Xuzhou 221004, China

3 Department of MR Clinical Research, Canon Medical Systems (China), Beijing 100027, China

Corresponding author: HU C F, E-mail: hcfxz@163.com

Conflicts of interest   None.

Received  2025-05-08
Accepted  2025-08-08
DOI: 10.12015/issn.1674-8034.2025.08.019
DOI:10.12015/issn.1674-8034.2025.08.019.

[1]
CHEN Y, GUO H, DONG P, et al. Feasibility of 3.0 T balanced fast field echo non-contrast-enhanced whole-heart coronary magnetic resonance angiography[J]. Cardiovasc Diagn Ther, 2023, 13(1): 51-60. DOI: 10.21037/cdt-22-487.
[2]
BOLLANO E, REDFORS B, RAWSHANI A, et al. Temporal trends in characteristics and outcome of heart failure patients with and without significant coronary artery disease[J]. ESC Heart Fail, 2022, 9(3): 1812-1822. DOI: 10.1002/ehf2.13875.
[3]
JIBRIL K A, KUIPER K J, NAWAZ B, et al. Burden of coronary artery disease as a predictor of new vascular events and mortality in patients with ischemic stroke: insights from the Norwegian stroke in the young study[J/OL]. J Am Heart Assoc, 2025, 14(6): e038899 [2025-05-07]. https://pubmed.ncbi.nlm.nih.gov/40079310/. DOI: 10.1161/JAHA.124.038899.
[4]
GBD 2021 Causes of Death Collaborators. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet, 2024, 403(10440): 2100-2132. DOI: 10.1016/S0140-6736(24)00367-2.
[5]
EDVARDSEN T, ASCH F M, DAVIDSON B, et al. Non-invasive imaging in coronary syndromes: recommendations of the European association of cardiovascular imaging and the American society of echocardiography, in collaboration with the American society of nuclear cardiology, society of cardiovascular computed tomography, and society for cardiovascular magnetic resonance[J]. J Am Soc Echocardiogr, 2022, 35(4): 329-354. DOI: 10.1016/j.echo.2021.12.012.
[6]
KATO S, AZUMA M, NAKAYAMA N, et al. Diagnostic accuracy of whole heart coronary magnetic resonance angiography: a systematic review and meta-analysis[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 36 [2025-05-07]. https://pubmed.ncbi.nlm.nih.gov/37357310/. DOI: 10.1186/s12968-023-00949-6.
[7]
SUN Z, CHOO G H, NG K H. Coronary CT angiography: current status and continuing challenges[J]. Br J Radiol, 2012, 85(1013): 495-510. DOI: 10.1259/bjr/15296170.
[8]
KATO Y, AMBALE-VENKATESH B, KASSAI Y, et al. Non-contrast coronary magnetic resonance angiography: current frontiers and future horizons[J]. MAGMA, 2020, 33(5): 591-612. DOI: 10.1007/s10334-020-00834-8.
[9]
KATO S, FUKUI K. Successful stent implantation with the use of non contrast whole-heart coronary magnetic resonance angiography and intravascular ultrasound in patient with allergy to iodinated contrast media[J]. Cardiovasc Interv Ther, 2021, 36(4): 539-541. DOI: 10.1007/s12928-020-00712-z.
[10]
LIM R P, HECHT E M, DESMOND P M. Noncontrast magnetic resonance angiography in the era of nephrogenic systemic fibrosis and gadolinium deposition[J]. J Comput Assist Tomogr, 2021, 45(1): 37-51. DOI: 10.1097/RCT.0000000000001074.
[11]
KATO S, KITAGAWA K, ISHIDA N, et al. Assessment of coronary artery disease using magnetic resonance coronary angiography a national multicenter trial[J]. J Am Coll Cardiol, 2010, 56(12): 983-991. DOI: 10.1016/j.jacc.2010.01.071.
[12]
CHEN Z Y, DUAN Q, XUE X J, et al. Noninvasive detection of coronary artery stenoses with contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0 T[J]. Cardiology, 2010, 117(4): 284-290. DOI: 10.1159/000323829.
[13]
LU H F, GUO J J, ZHAO S H, et al. Assessment of non-contrast-enhanced Dixon water-fat separation compressed sensing whole-heart coronary MR angiography at 3.0 T: a single-center experience[J/OL]. Acad Radiol, 2022, 29(Suppl 4): S82-S90 [2025-05-07]. https://pubmed.ncbi.nlm.nih.gov/34127363/. DOI: 10.1016/j.acra.2021.05.009.
[14]
DAI J W, CAO J, LIN L, et al. Feasibility of non-contrast-enhanced coronary magnetic resonance angiography at 3.0T[J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2020, 42(2): 216-221. DOI: 10.3881/j.issn.1000-503X.11295.
[15]
WU X, TANG L, YUE X, et al. Research progress of magnetic resonance non-contrast three-dimensional coronary imaging[J]. Chin J Magn Reson Imag, 2022, 13(9): 148-150, 155. DOI: 10.12015/issn.1674-8034.2022.09.035.
[16]
AUSTEN W G, EDWARDS J E, FRYE R L, et al. A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association[J/OL]. Circulation, 1975, 51(4Suppl): 5-40 [2025-05-07]. https://pubmed.ncbi.nlm.nih.gov/1116248/. DOI: 10.1161/01.cir.51.4.5.
[17]
LEIPSIC J, ABBARA S, ACHENBACH S, et al. SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee[J]. J Cardiovasc Comput Tomogr, 2014, 8(5): 342-358. DOI: 10.1016/j.jcct.2014.07.003.
[18]
KANG E J, LEE J. Editorial for "clinical application of non-contrast-enhanced Dixon water-fat separation compressed SENSE whole-heart coronary MR angiography at 3.0 T with and without nitroglycerin"[J]. J Magn Reson Imaging, 2022, 55(2): 592-593. DOI: 10.1002/jmri.27869.
[19]
MALAYERI A A, MACEDO R, LI D B, et al. Coronary vessel wall evaluation by magnetic resonance imaging in the multi-ethnic study of atherosclerosis: determinants of image quality[J]. J Comput Assist Tomogr, 2009, 33(1): 1-7. DOI: 10.1097/RCT.0b013e3181648606.
[20]
HAJHOSSEINY R, MUNOZ C, CRUZ G, et al. Coronary magnetic resonance angiography in chronic coronary syndromes[J/OL]. Front Cardiovasc Med, 2021, 8: 682924 [2025-05-07]. https://pubmed.ncbi.nlm.nih.gov/34485397/. DOI: 10.3389/fcvm.2021.682924.
[21]
WOOD G, HAJHOSSEINY R, PEDERSEN A U, et al. Image Navigator-based, automated coronary magnetic resonance angiography for the detection of coronary artery stenosis[J/OL]. J Cardiovasc Magn Reson, 2024, 26(2): 101097 [2025-05-07]. https://pubmed.ncbi.nlm.nih.gov/39293786/. DOI: 10.1016/j.jocmr.2024.101097.
[22]
WU X, TANG L, LI W J, et al. Feasibility of accelerated non-contrast-enhanced whole-heart bSSFP coronary MR angiography by deep learning-constrained compressed sensing[J]. Eur Radiol, 2023, 33(11): 8180-8190. DOI: 10.1007/s00330-023-09740-8.
[23]
WU X, YUE X, PENG P F, et al. Accelerated 3D whole-heart non-contrast-enhanced mDIXON coronary MR angiography using deep learning-constrained compressed sensing reconstruction[J/OL]. Insights Imaging, 2024, 15(1): 224 [2025-05-07]. https://pubmed.ncbi.nlm.nih.gov/39298070/. DOI: 10.1186/s13244-024-01797-3.
[24]
LIN L, ZHENG Y J, LI Y Y, et al. Automatic vessel segmentation and reformation of non-contrast coronary magnetic resonance angiography using transfer learning-based three-dimensional U-Net with attention mechanism[J/OL]. J Cardiovasc Magn Reson, 2025, 27(1): 101126 [2025-05-07]. https://pubmed.ncbi.nlm.nih.gov/39581550/. DOI: 10.1016/j.jocmr.2024.101126.
[25]
OTA H, MORITA Y, VUCEVIC D, et al. Motion robust coronary MR angiography using zigzag centric ky-kz trajectory and high-resolution deep learning reconstruction[J]. MAGMA, 2024, 37(6): 1105-1117. DOI: 10.1007/s10334-024-01172-9.
[26]
NAKAMURA M, KIDO T, KIDO T, et al. Non-contrast compressed sensing whole-heart coronary magnetic resonance angiography at 3T: a comparison with conventional imaging[J]. Eur J Radiol, 2018, 104: 43-48. DOI: 10.1016/j.ejrad.2018.04.025.
[27]
HOFFMANN U, MASSARO J M, FOX C S, et al. Defining normal distributions of coronary artery calcium in women and men (from the Framingham Heart Study)[J]. Am J Cardiol, 2008, 102(9): 1136-1141, 1141.e1. DOI: 10.1016/j.amjcard.2008.06.038..
[28]
WANG W W, ZHANG L Y, SU G Z, et al. Optimization of the acceleration of compressed sensing in whole-heart contrast-free coronary magnetic resonance angiography[J/OL]. J Cardiovasc Magn Reson, 2025, 27(1): 101845 [2025-05-07]. https://pubmed.ncbi.nlm.nih.gov/39864742/. DOI: 10.1016/j.jocmr.2025.101845.
[29]
SUN B, CHEN Z Y, DUAN Q, et al. A direct comparison of 3 T contrast-enhanced whole-heart coronary cardiovascular magnetic resonance angiography to dual-source computed tomography angiography for detection of coronary artery stenosis: a single-center experience[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 40 [2025-05-07]. https://pubmed.ncbi.nlm.nih.gov/32475355/. DOI: 10.1186/s12968-020-00630-2.
[30]
JIANG Y, HU Q J, ZHAO Y E, et al. 3D non-contrast whole-heart coronary MR angiography at 3 T with compressed sensing in elderly patients: Optimization of the acceleration factor[J/OL]. Eur J Radiol Open, 2025, 14: 100641 [2025-05-07]. https://pubmed.ncbi.nlm.nih.gov/40125075/. DOI: 10.1016/j.ejro.2025.100641.
[31]
HUANG R, LI F L, ZHAO Z, et al. Hybrid SPECT/CT for attenuation correction of stress myocardial perfusion imaging[J]. Clin Nucl Med, 2011, 36(5): 344-349. DOI: 10.1097/RLU.0b013e318212c525.

PREV Feasibility of reduced dose of <sup>18</sup>F-FDG during chest PET/MR examinations
NEXT A case of leydig cell tumor misdiagnosed as seminomatous germ cell tumer by MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn