Share:
Share this content in WeChat
X
Review
Research advances in magnetic resonance imaging for cognitive impairment in prediabetes mellitus
XIANG Yu  YANG Siyi  TIAN Bin  HE Qing  LI Shiguang 

DOI:10.12015/issn.1674-8034.2025.08.021.


[Abstract] With the continuous deepening of research in the field of glucose metabolism disorders, prediabetes mellitus (PDM), as a critical stage in the development of diabetes, can lead to abnormalities in brain structure and function, increasing the risk of cognitive impairment and thus becoming a major public health issue urgently needing to be addressed in the current medical field of glucose metabolism disorders; at present, the pathophysiological mechanisms underlying PDM-induced abnormalities in brain tissue structure and function have not yet been fully clarified, and there is a lack of systematic research conclusions on its imaging characteristics, against which background the use of non-invasive MRI technology to achieve early diagnosis and intervention of PDM-related brain injury holds important clinical practical value; in recent years, MRI and its derivative technologies have gradually demonstrated irreplaceable and significant advantages in exploring the pathogenesis and clinical diagnosis of PDM-related brain injury, and this article systematically reviews the research progress on PDM-related changes in brain structure and function based on multimodal MRI techniques, while pointing out the limitations of current research and exploring future research directions, aiming to provide new insights for elaborating the pathological mechanisms of PDM-related cognitive impairment and optimizing clinical treatment decisions.
[Keywords] prediabetes mellitus;brain structure;magnetic resonance imaging;resting-state functional magnetic resonance imaging;diffusion tensor imaging;gray matter;white matter;glymphatic system

XIANG Yu1   YANG Siyi1   TIAN Bin2   HE Qing2   LI Shiguang1, 2*  

1 College of Medical Imaging, Guizhou Medical University, Guiyang 550004, China

2 Department of Imaging, the Second People's Hospital of Guiyang, Guiyang 550081, China

Corresponding author: LI S G, E-mail: imaging_shiguangli@163.com

Conflicts of interest   None.

Received  2025-05-15
Accepted  2025-08-08
DOI: 10.12015/issn.1674-8034.2025.08.021
DOI:10.12015/issn.1674-8034.2025.08.021.

[1]
Chinese Society of Endocrinology, Chinese Diabetes Society, Chinese Endocrinologist Association. Intervention for adults with pre-diabetes: a Chinese expert consensus (2023 Edition)[J]. Chin J Diabetes Mellitus, 2023, 15(6): 484-494. DOI: 10.3760/cma.j.cn115791-20230509-00188.
[2]
ZHANG Y, SHEN T, WANG S. Progression from prediabetes to type 2 diabetes mellitus induced by overnutrition[J]. Hormones (Athens), 2022, 21(4): 591-597. DOI: 10.1007/s42000-022-00399-2.
[3]
SANCHES J M, ZHAO L N, SALEHI A, et al. Pathophysiology of type 2 diabetes and the impact of altered metabolic interorgan crosstalk[J]. Febs J, 2023, 290(3): 620-648. DOI: 10.1111/febs.16306.
[4]
LI R S, HAN X L, HUA M Y, et al. Advances in magnetic resonance imaging studies in patients with cognitive impairment in type 2 diabetes mellitus[J]. Chin J Magn Reson Imaging, 2022, 13(2): 108-111, 115. DOI: 10.12015/issn.1674-8034.2022.02.026.
[5]
FURLANO J A, HORST B R, NAGAMATSU L S. Brain deficits in prediabetic adults: A systematic review[J]. J Neurosci Res, 2021, 99(7): 1725-1743. https://pubmed.ncbi.nlm.nih.gov/33819349/. DOI: 10.1002/jnr.24830.
[6]
ŞEN G A, TANRıKULU S, BEŞER B, et al. Effects of prediabetes and type 2 diabetes on cognitive functions[J]. Endocrine, 2024, 85(1): 190-195. DOI: 10.1007/s12020-024-03720-8.
[7]
DOVE A, WANG J, HUANG H, et al. Diabetes, Prediabetes, and Brain Aging: The Role of Healthy Lifestyle[J]. Diabetes Care, 2024, 47(10): 1794-1802. DOI: 10.2337/dc24-0860.
[8]
HOYOS C M, STEPHEN C, TURNER A, et al. Brain oxidative stress and cognitive function in older adults with diabetes and pre-diabetes who are at risk for dementia[J/OL]. Diabetes Res Clin Pract, 2022, 184: 109178 [2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/34958845/. DOI: 10.1016/j.diabres.2021.109178.
[9]
GUO M, KANG K, WANG A, et al. Association of diabetes status with cognitive impairment in two Chinese rural communities[J/OL]. J Neurol Sci, 2020, 415: 116894 [2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/32446011/. DOI: 10.1016/j.jns.2020.116894.
[10]
MARSEGLIA A, FRATIGLIONI L, KALPOUZOS G, et al. Prediabetes and diabetes accelerate cognitive decline and predict microvascular lesions: A population-based cohort study[J]. Alzheimers Dement, 2019, 15(1): 25-33. DOI: 10.1016/j.jalz.2018.06.3060.
[11]
REITZ C, GUZMAN V A, NARKHEDE A, et al. Relation of Dysglycemia to Structural Brain Changes in a Multiethnic Elderly Cohort[J]. J Am Geriatr Soc, 2017, 65(2): 277-285. DOI: 10.1111/jgs.14551.
[12]
SUMBUL-SEKERCI B, PASIN O, BALKAN E, et al. The Role of Inflammation, Oxidative Stress, Neuronal Damage, and Endothelial Dysfunction in the Neuropathology of Cognitive Complications in Diabetes: A Moderation and Mediation Analysis[J/OL]. Brain Behav, 2025, 15(1): e70225 [2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/39829127/. DOI: 10.1002/brb3.70225.
[13]
HENI M. The insulin resistant brain: impact on whole-body metabolism and body fat distribution[J]. Diabetologia, 2024, 67(7): 1181-1191. DOI: 10.1007/s00125-024-06104-9.
[14]
LUCHSINGER J A, PALTA P, RIPPON B, et al. Pre-Diabetes, but not Type 2 Diabetes, Is Related to Brain Amyloid in Late Middle-Age[J]. J Alzheimers Dis, 2020, 75(4): 1241-1252. DOI: 10.3233/JAD-200232.
[15]
XU F, HU J, LI X, et al. Inhibition of platelet activation alleviates diabetes-associated cognitive dysfunction via attenuating blood-brain barrier injury[J/OL]. Brain Res Bull, 2025, 221: 111211 [2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/39828041/. DOI: 10.1016/j.brainresbull.2025.111211.
[16]
DANG M, YANG C, CHEN K, et al. Hippocampus-centred grey matter covariance networks predict the development and reversion of mild cognitive impairment[J/OL]. Alzheimers Res Ther, 2023, 15(1): 27 [2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/36732782/. DOI: 10.1186/s13195-023-01167-z.
[17]
CHEN Y, LI Z, CHEN Y, et al. Cerebellar gray matter and white matter damage among older adults with prediabetes[J/OL]. Diabetes Res Clin Pract, 2024, 213: 111731 [2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/38851538/. DOI: 10.1016/j.diabres.2024.111731.
[18]
MARKUS H S, DE LEEUW F E. Cerebral small vessel disease: Recent advances and future directions[J]. Int J Stroke, 2023, 18(1): 4-14. DOI: 10.1177/17474930221144911.
[19]
CHAKER S C, REDDY A P, KING D, et al. Diffusion Tensor Imaging: Techniques and Applications for Peripheral Nerve Injury[J]. Ann Plast Surg, 2024, 93(3SSuppl 2): S113-S115. DOI: 10.1097/SAP.0000000000004055.
[20]
GHADERI S, MOHAMMADI S, FATEHI F. Diffusion Tensor Imaging (DTI) Biomarker Alterations in Brain Metastases and Comparable Tumors: A Systematic Review of DTI and Tractography Findings[J]. World Neurosurg, 2024, 190: 113-129. DOI: 10.1016/j.wneu.2024.07.037.
[21]
YUAN J, SIAKALLIS L, LI H B, et al. Structural- and DTI- MRI enable automated prediction of IDH Mutation Status in CNS WHO Grade 2-4 glioma patients: a deep Radiomics Approach[J/OL]. BMC Med Imaging, 2024, 24(1): 104 [2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/38702613/. DOI: 10.1186/s12880-024-01274-9.
[22]
RASHIDI F, KHANMIRZAEI M H, HOSSEINZADEH F, et al. Cingulum and uncinate fasciculus microstructural abnormalities in Parkinson's disease: A systematic review of diffusion tensor imaging studies[J/OL]. Biology (Basel), 2023, 12(3): 475 [2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/36979166/. DOI: 10.3390/biology12030475.
[23]
ZHOU Y, JING J, ZHANG Z, et al. Disrupted pattern of rich-club organization in structural brain network from prediabetes to diabetes: A population-based study[J/OL]. Hum Brain Mapp, 2024, 45(2): e26598 [2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/38339955/. DOI: 10.1002/hbm.26598.
[24]
ZHANG W, ZHOU Y, WANG J, et al. Glymphatic clearance function in patients with cerebral small vessel disease[J/OL]. Neuroimage, 2021, 238: 118257 [2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/34118396/. DOI: 10.1016/j.neuroimage.2021.118257.
[25]
TUERXUN R, KAMAGATA K, SAITO Y, et al. Assessing interstitial fluid dynamics in type 2 diabetes mellitus and prediabetes cases through diffusion tensor imaging analysis along the perivascular space[J/OL]. Front Aging Neurosci, 2024, 16: 1362457 [2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/38515515/. DOI: 10.3389/fnagi.2024.1362457.
[26]
STEWARD C E, VENKATRAMAN V K, LUI E, et al. Assessment of the DTI-ALPS Parameter Along the Perivascular Space in Older Adults at Risk of Dementia[J]. J Neuroimaging, 2021, 31(3): 569-578. DOI: 10.1111/jon.12837.
[27]
AMEMIYA S, TAKAO H, ABE O. Resting-State fMRI: Emerging Concepts for Future Clinical Application[J]. J Magn Reson Imaging, 2024, 59(4): 1135-1148. DOI: 10.1002/jmri.28894.
[28]
CHEN K, AZEEZ A, CHEN D Y, et al. Resting-State Functional Connectivity: Signal Origins and Analytic Methods[J]. Neuroimaging Clin N Am, 2020, 30(1): 15-23. https://pubmed.ncbi.nlm.nih.gov/31759568/. DOI: 10.1016/j.nic.2019.09.012.
[29]
RUBINOV M, SPORNS O. Complex network measures of brain connectivity: uses and interpretations[J]. Neuroimage, 2010, 52(3): 1059-1069. DOI: 10.1016/j.neuroimage.2009.10.003.
[30]
FARAHANI F V, KARWOWSKI W, LIGHTHALL N R. Application of graph theory for identifying connectivity patterns in human brain networks: A systematic review[J/OL]. Front Neurosci, 2019, 13: 585 [2025-05-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582769/. DOI: 10.3389/fnins.2019.00585.
[31]
BAKKOUR A, MORRIS J C, DICKERSON B C. The cortical signature of prodromal AD: regional thinning predicts mild AD dementia[J]. Neurology, 2009, 72(12): 1048-1055. https://pubmed.ncbi.nlm.nih.gov/19109536/. DOI: 10.1212/01.wnl.0000340981.97664.2f.
[32]
SHIN J, PATEL Y, PARKER N, et al. Prediabetic HbA1c and Cortical Atrophy: Underlying Neurobiology[J]. Diabetes Care, 2023, 46(12): 2267-2272. https://pubmed.ncbi.nlm.nih.gov/37824790/. DOI: 10.2337/dc23-1105.
[33]
LI X, ZHANG W, LIU J N, et al. Correlation between cortical atrophy and cognitive function in pre-diabetes and type 2 diabetes mellitus[J]. Chin J Magn Reson Imaging, 2024, 15(4): 9-14, 19. DOI: 10.12015/issn.1674-8034.2024.04.002.
[34]
OMER D B, LAS L, ULANOVSKY N. Contextual and pure time coding for self and other in the hippocampus[J]. Nat Neurosci, 2023, 26(2): 285-294. https://pubmed.ncbi.nlm.nih.gov/36585486/. DOI: 10.1038/s41593-022-01226-y.
[35]
CUI D, LIU X, LIU M, et al. Subcortical gray matter structural alterations in prediabetes and type 2 diabetes[J]. Neuroreport, 2019, 30(6): 441-445. https://pubmed.ncbi.nlm.nih.gov/30855559/. DOI: 10.1097/WNR.0000000000001224.
[36]
BAO C, LIU X, LI Y, et al. Region-specific hippocampal atrophy is correlated with poor glycemic control in type 2 diabetes: a cross-sectional study[J]. Endocr J, 2023, 70(12): 1131-1140. DOI: 10.1507/endocrj.EJ23-0211.
[37]
DONG S, DONGWEI L, ZHANG J, et al. Individuals in the prediabetes stage exhibit reduced hippocampal tail volume and executive dysfunction[J/OL]. Brain Behav, 2019, 9(8): e01351 [2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/31240857/. DOI: 10.1002/brb3.1351.
[38]
MONEREO-SÁNCHEZ J, JANSEN J F A, KÖHLER S, et al. The association of prediabetes and type 2 diabetes with hippocampal subfields volume: The Maastricht study[J/OL]. Neuroimage Clin, 2023, 39: 103455 [2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/37356423/. DOI: 10.1016/j.nicl.2023.103455.
[39]
CHOI K S, HWANG I, MOON J H, KIM M. Progressive reduction in basal ganglia explains and predicts cerebral structural alteration in type 2 diabetes[J]. J Cereb Blood Flow Metab, 2023, 43(12): 2096-2104. DOI: 10.1177/0271678X231197273.
[40]
JING J, LIU C, ZHU W, et al. Increased Resting-State Functional Connectivity as a Compensatory Mechanism for Reduced Brain Volume in Prediabetes and Type 2 Diabetes[J]. Diabetes Care, 2023, 46(4): 819-827. DOI: 10.2337/dc22-1998.
[41]
LI R, GENG T, LI L, et al. Associations of Glucose Metabolism Status with Brain Macrostructure and Microstructure: Findings from the UK Biobank[J/OL]. J Clin Endocrinol Metab, 2023, 109(1): e234-e242 [2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/37497611/. DOI: 10.1210/clinem/dgad442.
[42]
DENG L, LIU H, LIU W, et al. Alteration in topological organization characteristics of gray matter covariance networks in patients with prediabetes[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2022, 47(10): 1375-1384. DOI: 10.11817/j.issn.1672-7347.2022.220085.
[43]
GUO W, SHI J. White matter hyperintensities volume and cognition: A meta-analysis[J]. Front Aging Neurosci, 2022, 14: 949763 [2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/36118701/. DOI: 10.3389/fnagi.2022.949763.
[44]
VAN AGTMAAL M J M, HOUBEN A, DE WIT V, et al. Prediabetes Is Associated With Structural Brain Abnormalities: The Maastricht Study[J]. Diabetes Care, 2018, 41(12): 2535-2543. DOI: 10.2337/dc18-1132.
[45]
CHEN Y, LI Z, CHEN Y, et al. Cerebellar gray matter and white matter damage among older adults with prediabetes[J/OL]. Diabetes Res Clin Pract, 2024, 213: 111731 [2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/38851538/. DOI: 10.1016/j.diabres.2024.111731.
[46]
CHOU Y H, TON THAT V, SUNDMAN M. A systematic review and meta-analysis of rTMS effects on cognitive enhancement in mild cognitive impairment and Alzheimer's disease[J]. Neurobiol Aging, 2020, 86: 1-10. DOI: 10.1016/j.neurobiolaging.2019.08.020.
[47]
JING J, ZHOU Y, PAN Y, et al. Reduced white matter microstructural integrity in prediabetes and diabetes: A population-based study[J/OL]. EBioMedicine, 2022, 82: 104144 [2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/35810560/. DOI: 10.1016/j.ebiom.2022.104144.
[48]
VERGOOSSEN L W, SCHRAM M T, DE JONG J J, et al. White Matter Connectivity Abnormalities in Prediabetes and Type 2 Diabetes: The Maastricht Study[J]. Diabetes Care, 2020, 43(1): 201-208. https://pubmed.ncbi.nlm.nih.gov/31601638/. DOI: 10.2337/dc19-0762.
[49]
BALDI S, MICHIELSE S, VRIEND C, et al. Abnormal white-matter rich-club organization in obsessive-compulsive disorder[J]. Hum Brain Mapp, 2022, 43(15): 4699-4709. DOI: 10.1002/hbm.25984.
[50]
KIM S J, BAE Y J, PARK Y H, et al. Sex differences in the structural rich-club connectivity in patients with Alzheimer's disease[J/OL]. Front Aging Neurosci, 2023, 15: 1209027 [2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/37771522/. DOI: 10.3389/fnagi.2023.1209027.
[51]
TIAN B, ZHAO C, LIANG J L, et al. Glymphatic function and its influencing factors in different glucose metabolism states[J]. World J Diabetes, 2024, 15(7): 1537-1550. DOI: 10.4239/wjd.v15.i7.1537.
[52]
GONG L Y, GAO M X, WEN J Y, et al. Comparison of brain functional alterations in young adults with pre-diabetes and type 2 diabetes mellitus[J]. Chin J Magn Reson Imaging, 2025, 16(1): 74-80. DOI: 10.12015/issn.1674-8034.2025.01.012.
[53]
LOPEZ-VILARET K M, FERNANDEZ-ALVAREZ M, SHOKRI-KOJORI E, et al. Pre-diabetes is associated with altered functional connectivity density in cortical regions of the default-mode network[J/OL]. Front Aging Neurosci, 2022, 14: 1034355 [2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/36438011/. DOI: 10.3389/fnagi.2022.1034355.
[54]
SADLER J R, SHEARRER G E, BURGER K S. Alterations in ventral attention network connectivity in individuals with prediabetes[J]. Nutr Neurosci, 2021, 24(2): 140-147. DOI: 10.1080/1028415X.2019.1609646.
[55]
VAN BUSSEL F C, BACKES W H, VAN VEENENDAAL T M, et al. Functional Brain Networks Are Altered in Type 2 Diabetes and Prediabetes: Signs for Compensation of Cognitive Decrements? The Maastricht Study[J]. Diabetes, 2016, 65(8): 2404-2413. DOI: 10.2337/db16-0128.

PREV A case of leydig cell tumor misdiagnosed as seminomatous germ cell tumer by MRI
NEXT Research progress in the application of glymphatic system-based imaging techniques in cerebral small vessel disease-related cognitive impairment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn