Share:
Share this content in WeChat
X
Review
Research progress in the application of glymphatic system-based imaging techniques in cerebral small vessel disease-related cognitive impairment
WANG Yufei  ZHANG Daopei  LIU Bingyang  WANG Weitao 

DOI:10.12015/issn.1674-8034.2025.08.022.


[Abstract] Cognitive impairment due to cerebral small vessel disease (CSVD) is one of the most common clinical conditions. Emerging evidence indicates that the glymphatic system plays a critical role in the pathogenesis and progression of this disorder. However, the optimal imaging techniques for detecting glymphatic dysfunction in CSVD-related cognitive impairment remain elusive. This review systematically synthesizes the pathophysiological mechanisms linking the glymphatic system to CSVD-type cognitive impairment and summarizes the validated imaging modalities, aiming to facilitate clinical decision-making in therapeutic selection.
[Keywords] cerebral small vessel disease;cognitive impairment;glymphatic;magnetic resonance imaging;imaging techniques

WANG Yufei1   ZHANG Daopei1, 2, 3*   LIU Bingyang1   WANG Weitao1  

1 Department of Encephalopathy, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China

2 Henan Provincial Collaborative Innovation Center for Prevention and Treatment of Major Diseases with Integrated Traditional Chinese and Western Medicine, First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou 450000, China

3 Fourth Department of Encephalopathy, Henan Provincial Vertigo Diagnosis and Treatment Center, Vertigo Disease Research Institute of Henan University of Chinese Medicine, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China

Corresponding author: ZHANG D P, E-mail: zhangdaopei89@163.com

Conflicts of interest   None.

Received  2025-04-22
Accepted  2025-08-08
DOI: 10.12015/issn.1674-8034.2025.08.022
DOI:10.12015/issn.1674-8034.2025.08.022.

[1]
DUPRÉ N, DRIEU A, JOUTEL A. Pathophysiology of cerebral small vessel disease: a journey through recent discoveries[J/OL]. J Clin Invest, 2024, 134(10): e172841 [2025-04-22]. https://doi.org/10.1172/JCI172841. DOI: 10.1172/JCI172841.
[2]
MARKUS H S, JOUTEL A. The pathogenesis of cerebral small vessel disease and vascular cognitive impairment[J]. Physiol Rev, 2025, 105(3): 1075-1171. DOI: 10.1152/physrev.00028.2024.
[3]
SHARRIEF A. Diagnosis and Management of Cerebral Small Vessel Disease[J]. Continuum (Minneap Minn), 2023, 29(2): 501-518. DOI: 10.1212/CON.0000000000001232.
[4]
MUIR R T, SMITH E E. The Spectrum of Cerebral Small Vessel Disease: Emerging Pathophysiologic Constructs and Management Strategies[J]. Neurol Clin, 2024, 42(3): 663-688. DOI: 10.1016/j.ncl.2024.03.003.
[5]
HAINSWORTH A H, MARKUS H S, SCHNEIDER J A. Cerebral Small Vessel Disease, Hypertension, and Vascular Contributions to Cognitive Impairment and Dementia[J]. Hypertension, 2024, 81(1): 75-86. DOI: 10.1161/HYPERTENSIONAHA.123.19943.
[6]
CHUNG C P, IHARA M, HILAL S, et al. Targeting cerebral small vessel disease to promote healthy aging: Preserving physical and cognitive functions in the elderly[J/OL]. Arch Gerontol Geriatr, 2023, 110: 104982 [2025-04-22]. https://doi.org/10.1016/j.archger.2023.104982. DOI: 10.1016/j.archger.2023.104982.
[7]
JAVITT D C. Cognitive Impairment Associated with Schizophrenia: From Pathophysiology to Treatment[J]. Annu Rev Pharmacol Toxicol, 2023, 63: 119-141. DOI: 10.1146/annurev-pharmtox-051921-093250.
[8]
HUANG X T, CHEN C Y, ZHANG Q F, et al. Meta-analysis of the efficacy of acupuncture in the treatment of the vascular cognitive impairment associated with cerebral small vessel disease[J]. Explore (NY), 2023, 19(4): 509-518. DOI: 10.1016/j.explore.2022.10.019.
[9]
KELLY D M, PINHEIRO A A, KOINI M, et al. Impaired kidney function, cerebral small vessel disease and cognitive disorders: the Framingham Heart Study[J]. Nephrol Dial Transplant, 2024, 39(11): 1911-1922. DOI: 10.1093/ndt/gfae079.
[10]
MAO C, MO Y, JIANG J, et al. Association between high plasma p-tau181 level and gait changes in patients with mild cognitive impairment[J/OL]. Sci Rep, 2025, 15(1): 14679 [2025-04-22]. https://doi.org/10.1038/s41598-025-94472-6. DOI: 10.1038/s41598-025-94472-6.
[11]
MARKUS H S, DE LEEUW F E. Cerebral small vessel disease: Recent advances and future directions[J]. Int J Stroke, 2023, 18(1): 4-14. DOI: 10.1177/17474930221144911.
[12]
DAO E, BARHA C K, ZOU J, et al. Prevention of Vascular Contributions to Cognitive Impairment and Dementia: The Role of Physical Activity and Exercise[J]. Stroke, 2024, 55(4): 812-821. DOI: 10.1161/STROKEAHA.123.044173.
[13]
HONG H, TOZER D J, MARKUS H S. Relationship of Perivascular Space Markers With Incident Dementia in Cerebral Small Vessel Disease[J]. Stroke, 2024, 55(4): 1032-1040. DOI: 10.1161/STROKEAHA.123.045857.
[14]
SAWYER R P, WORRALL B B, HOWARD V J, et al. Methods of a Study to Assess the Contribution of Cerebral Small Vessel Disease and Dementia Risk Alleles to Racial Disparities in Vascular Cognitive Impairment and Dementia[J/OL]. J Am Heart Assoc, 2023, 12(17): e030925 [2025-04-22]. https://doi.org/10.1161/JAHA.123.030925. DOI: 10.1161/JAHA.123.030925.
[15]
KANCHEVA A K, WARDLAW J M, LYALL D M, et al. Clinical Phenotypes Associated With Cerebral Small Vessel Disease: An Overview of Systematic Reviews[J/OL]. Neurology, 2024, 102(8): e209267 [2025-04-22]. https://doi.org/10.1212/WNL.0000000000209267. DOI: 10.1212/WNL.0000000000209267.
[16]
CHENG Z Z, GAO F, LV X Y, et al. Features of Cerebral Small Vessel Disease Contributes to the Differential Diagnosis of Alzheimer's Disease[J]. J Alzheimers Dis, 2023, 91(2): 795-804. DOI: 10.3233/JAD-220872.
[17]
TAP L, VERNOOIJ M W, WOLTERS F, et al. New horizons in cognitive and functional impairment as a consequence of cerebral small vessel disease[J/OL]. Age Ageing, 2023, 52(8): afad148 [2025-04-22]. https://doi.org/10.1093/ageing/afad148. DOI: 10.1093/ageing/afad148.
[18]
HANNAWI Y. Cerebral Small Vessel Disease: a Review of the Pathophysiological Mechanisms[J]. Transl Stroke Res, 2024, 15(6): 1050-1069. DOI: 10.1007/s12975-023-01195-9.
[19]
BLUMEN H M, JAYAKODY O, VERGHESE J. Gait in cerebral small vessel disease, pre-dementia, and dementia: A systematic review[J]. Int J Stroke, 2023, 18(1): 53-61. DOI: 10.1177/17474930221114562.
[20]
SHEN Y, DONG Z, ZHONG J, et al. Effect of cerebral small vessel disease on cognitive impairment in Parkinson's disease[J]. Acta Neurol Belg, 2023, 123(2): 487-495. DOI: 10.1007/s13760-022-02078-w.
[21]
PENG S, LIU J, LIANG C, et al. Aquaporin-4 in glymphatic system, and its implication for central nervous system disorders[J/OL]. Neurobiol Dis, 2023, 179: 106035 [2025-04-22]. https://doi.org/10.1016/j.nbd.2023.106035. DOI: 10.1016/j.nbd.2023.106035.
[22]
GHANIZADA H, NEDERGAARD M. The glymphatic system[J]. Handb Clin Neurol, 2025, 209: 161-170. DOI: 10.1016/B978-0-443-19104-6.00006-1.
[23]
GOMOLKA R S, HABLITZ L M, MESTRE H, et al. Loss of aquaporin-4 results in glymphatic system dysfunction via brain-wide interstitial fluid stagnation[J/OL]. Elife, 2023, 12 [2025-04-22]. https://doi.org/10.7554/eLife.82232. DOI: 10.7554/eLife.82232.
[24]
GAO Y, LIU K, ZHU J. Glymphatic system: an emerging therapeutic approach for neurological disorders[J/OL]. Front Mol Neurosci, 2023, 16: 1138769 [2025-04-22]. https://doi.org/10.3389/fnmol.2023.1138769. DOI: 10.3389/fnmol.2023.1138769.
[25]
SZLUFIK S, KOPEĆ K, SZLESZKOWSKI S, et al. Glymphatic System Pathology and Neuroinflammation as Two Risk Factors of Neurodegeneration[J/OL]. Cells, 2024, 13(3): 286 [2025-04-22]. https://doi.org/10.3390/cells13030286. DOI: 10.3390/cells13030286.
[26]
CHEN S, WANG H, ZHANG L, et al. Glymphatic system: a self-purification circulation in brain[J/OL]. Front Cell Neurosci, 2025, 19: 1528995 [2025-04-22]. https://doi.org/10.3389/fncel.2025.1528995. DOI: 10.3389/fncel.2025.1528995.
[27]
FORMOLO D A, YU J, LIN K, et al. Leveraging the glymphatic and meningeal lymphatic systems as therapeutic strategies in Alzheimer's disease: an updated overview of nonpharmacological therapies[J/OL]. Mol Neurodegener, 2023, 18(1): 26 [2025-04-22]. https://doi.org/10.1186/s13024-023-00618-3. DOI: 10.1186/s13024-023-00618-3.
[28]
LOPES D M, WELLS J A, MA D, et al. Glymphatic inhibition exacerbates tau propagation in an Alzheimer's disease model[J/OL]. Alzheimers Res Ther, 2024, 16(1): 71 [2025-04-22]. https://doi.org/10.1186/s13024-023-00618-3. DOI: 10.1186/s13024-023-00618-3.
[29]
BESCHORNER N, NEDERGAARD M. Glymphatic system dysfunction in neurodegenerative diseases[J]. Curr Opin Neurol, 2024, 37(2): 182-188. DOI: 10.1097/WCO.0000000000001252.
[30]
DING Z, FAN X, ZHANG Y, et al. The glymphatic system: a new perspective on brain diseases[J/OL]. Front Aging Neurosci, 2023, 15: 1179988 [2025-04-22]. https://doi.org/10.3389/fnagi.2023.1179988. DOI: 10.3389/fnagi.2023.1179988.
[31]
LEE D H, LEE E C, PARK S W, et al. Pathogenesis of Cerebral Small Vessel Disease: Role of the Glymphatic System Dysfunction[J/OL]. Int J Mol Sci, 2024, 25(16): 1179988 [2025-04-22]. https://doi.org/10.3389/fnagi.2023.1179988. DOI: 10.3389/fnagi.2023.1179988.
[32]
NYÚL-TÓTH Á, PATAI R, CSISZAR A, et al. Linking peripheral atherosclerosis to blood-brain barrier disruption: elucidating its role as a manifestation of cerebral small vessel disease in vascular cognitive impairment[J]. Geroscience, 2024, 46(6): 6511-6536. DOI: 10.1007/s11357-024-01194-0.
[33]
BOYD E D, KAUR J, DING G, et al. Clinical magnetic resonance imaging evaluation of glymphatic function[J/OL]. NMR Biomed, 2024, 37(8): e5132 [2025-04-22]. https://doi.org/10.1002/nbm.5132. DOI: 10.1002/nbm.5132.
[34]
ZHANG R, LI J, LI X, et al. Thrapeutic approaches to CNS diseases via the meningeal lymphatic and glymphatic system: prospects and challenges[J/OL]. Front Cell Dev Biol, 2024, 12: 1467085 [2025-04-22]. https://doi.org/10.3389/fcell.2024.1467085. DOI: 10.3389/fcell.2024.1467085.
[35]
KALLER M S, LAZARI A, FENG Y, et al. Ablation of oligodendrogenesis in adult mice alters brain microstructure and activity independently of behavioral deficits[J]. Glia, 2024, 72(10): 1728-1745. DOI: 10.1002/glia.24576.
[36]
DEWAR D, UNDERHILL S M, GOLDBERG M P. Oligodendrocytes and ischemic brain injury[J]. J Cereb Blood Flow Metab, 2003, 23(3): 263-274. DOI: 10.1097/01.WCB.0000053472.41007.F9.
[37]
MOK V C T, CAI Y, MARKUS H S. Vascular cognitive impairment and dementia: Mechanisms, treatment, and future directions[J]. Int J Stroke, 2024, 19(8): 838-856. DOI: 10.1177/17474930241279888.
[38]
MARIGNIER R, NICOLLE A, WATRIN C, et al. Oligodendrocytes are damaged by neuromyelitis optica immunoglobulin G via astrocyte injury[J]. Brain, 2010, 133(9): 2578-2591. DOI: 10.1093/brain/awq177.
[39]
LEE V K, REYNOLDS W T, WALLACE J, et al. Quantitative Magnetic Resonance Cerebral Spinal Fluid Flow Properties and Executive Function Cognitive Outcomes in Congenital Heart Disease[J/OL]. medRxiv, 2024 [2025-04-22]. https://doi.org/10.1101/2024.04.19.24306104. DOI: 10.1101/2024.04.19.24306104.
[40]
ZHU H H, LI S S, WANG Y C, et al. Clearance dysfunction of trans-barrier transport and lymphatic drainage in cerebral small vessel disease: Review and prospect[J/OL]. Neurobiol Dis, 2023, 189: 106347 [2025-04-22]. https://doi.org/10.1016/j.nbd.2023.106347. DOI: 10.1016/j.nbd.2023.106347.
[41]
MILTON S, CAVAILLÈS C, ANCOLI-ISRAEL S, et al. Five-Year Changes in 24-Hour Sleep-Wake Activity and Dementia Risk in Oldest Old Women[J/OL]. Neurology, 2025, 104(8): e213403 [2025-04-22]. https://doi.org/10.1212/WNL.0000000000213403. DOI: 10.1212/WNL.0000000000213403.
[42]
ZENG Y, LI Y, JIANG W, et al. Molecular mechanisms of metabolic dysregulation in diabetic cardiomyopathy[J/OL]. Front Cardiovasc Med, 2024, 11: 1375400 [2025-04-22]. https://doi.org/10.3389/fcvm.2024.1375400. DOI: 10.3389/fcvm.2024.1375400.
[43]
TIAN X, ZUO Y, CHEN S, et al. Hypertension, Arterial Stiffness, and Diabetes: a Prospective Cohort Study[J]. Hypertension, 2022, 79(7): 1487-1496. DOI: 10.1161/HYPERTENSIONAHA.122.19256.
[44]
JIA G, BAI H, MATHER B, et al. Diabetic Vasculopathy: Molecular Mechanisms and Clinical Insights[J]. Int J Mol Sci, 2024, 76(6): 1038-1062. DOI: 10.1124/pharmrev.124.001060.
[45]
CARLSTRÖM M, WEITZBERG E, LUNDBERG J O. Nitric Oxide Signaling and Regulation in the Cardiovascular System: Recent Advances[J]. Pharmacol Rev, 2024, 76(6): 1038-1062. DOI: 10.1124/pharmrev.124.001060.
[46]
BOHARA S, BAGHERI A, ERTUGRAL E G, et al. Integrative analysis of gene expression, protein abundance, and metabolomic profiling elucidates complex relationships in chronic hyperglycemia-induced changes in human aortic smooth muscle cells[J/OL]. J Biol Eng, 2024, 18(1): 61 [2025-04-22]. https://doi.org/10.1186/s13036-024-00457-w. DOI: 10.1186/s13036-024-00457-w.
[47]
VAN ASTEN J G M, LATORRE M, KARAKAYA C, et al. A multiscale computational model of arterial growth and remodeling including Notch signaling[J]. Biomech Model Mechanobiol, 2023, 22(5): 1569-1588. DOI: 10.1007/s10237-023-01697-3.
[48]
YAO Y, LIU F, GU Z, et al. Emerging diagnostic markers and therapeutic targets in post-stroke hemorrhagic transformation and brain edema[J/OL]. Front Mol Neurosci, 2023, 16: 1286351 [2025-04-22]. https://doi.org/10.3389/fnmol.2023.1286351. DOI: 10.3389/fnmol.2023.1286351.
[49]
XU H, XIA M F, LI J. Research progress on the role of mechanically sensitive ion channel Piezo1 in vascular remodeling[J]. Zhonghua Xin Xue Guan Bing Za Zhi, 2025, 53(4): 452-456. DOI: 10.3760/cma.j.cn112148-20250128-00074.
[50]
SHEK N, CHOY A M, LANG C C, et al. Accelerated elastin degradation by age-disease interaction: a common feature in age-related diseases[J/OL]. NPJ Aging, 2024, 10(1): 15 [2025-04-22]. https://doi.org/10.1038/s41514-024-00143-7. DOI: 10.1038/s41514-024-00143-7.
[51]
HAFFNER C. Proteostasis in Cerebral Small Vessel Disease[J/OL]. Front Neurosci, 2019, 13: 1142 [2025-04-22]. https://doi.org/10.3389/fnins.2019.01142. DOI: 10.3389/fnins.2019.01142.
[52]
NEDERGAARD M, GOLDMAN S A. Glymphatic failure as a final common pathway to dementia[J]. Science, 2020, 370(6512): 50-56. DOI: 10.1126/science.abb8739
[53]
PIRZADA R H, JAVAID N, CHOI S. The Roles of the NLRP3 Inflammasome in Neurodegenerative and Metabolic Diseases and in Relevant Advanced Therapeutic Interventions[J/OL]. Genes (Basel), 2020, 11(2): 131 [2025-04-22]. https://pubmed.ncbi.nlm.nih.gov/32012695/. DOI: 10.3390/genes11020131.
[54]
LI H, JACOB M A, CAI M, et al. Perivascular Spaces, Diffusivity Along Perivascular Spaces, and Free Water in Cerebral Small Vessel Disease[J/OL]. Neurology, 2024, 102(9): e209306 [2025-04-22]. https://doi.org/10.3390/genes11020131. DOI: 10.1212/WNL.0000000000209306.
[55]
TAOKA T, MASUTANI Y, KAWAI H, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases[J]. Jpn J Radiol, 2017, 35(4): 172-178. DOI: 10.1007/s11604-017-0617-z.
[56]
ZHANG W, ZHOU Y, WANG J, et al. Glymphatic clearance function in patients with cerebral small vessel disease[J/OL]. Neuroimage, 2021, 238: 118257 [2025-04-22]. https://doi.org/10.1016/j.neuroimage.2021.118257. DOI: 10.1016/j.neuroimage.2021.118257.
[57]
KAMAGATA K, ANDICA C, TAKABAYASHI K, et al. Association of MRI Indices of Glymphatic System With Amyloid Deposition and Cognition in Mild Cognitive Impairment and Alzheimer Disease[J/OL]. Neurology, 2022, 99(24): e2648-e2660 [2025-04-22]. https://doi.org/10.1212/WNL.0000000000201300. DOI: 10.1212/WNL.0000000000201300.
[58]
HONG H, HONG L, LUO X, et al. The relationship between amyloid pathology, cerebral small vessel disease, glymphatic dysfunction, and cognition: a study based on Alzheimer's disease continuum participants[J/OL]. Alzheimers Res Ther, 2024, 16(1): 43 [2025-04-22]. https://doi.org/10.1186/s13195-024-01407-w. DOI: 10.1186/s13195-024-01407-w.
[59]
TIAN Y, CAI X, ZHOU Y, et al. Impaired glymphatic system as evidenced by low diffusivity along perivascular spaces is associated with cerebral small vessel disease: a population-based study[J]. Stroke Vasc Neurol, 2023, 8(5): 413-423. DOI: 10.1136/svn-2022-002191.
[60]
TAOKA T, NAGANAWA S, KAWAI H, et al. Can low b value diffusion weighted imaging evaluate the character of cerebrospinal fluid dynamics?[J]. Jpn J Radiol, 2019, 37(2): 135-144. DOI: 10.1007/s11604-018-0790-8.
[61]
TAOKA T, ITO R, NAKAMICHI R, et al. Diffusion-weighted image analysis along the perivascular space (DWI-ALPS) for evaluating interstitial fluid status: age dependence in normal subjects[J]. Jpn J Radiol, 2022, 40(9): 894-902. DOI: 10.1007/s11604-022-01275-0.
[62]
PASTERNAK O, SOCHEN N, GUR Y, et al. Free water elimination and mapping from diffusion MRI[J]. Magn Reson Med, 2009, 62(3): 717-730. DOI: 10.1002/mrm.22055.
[63]
SCHUMACHER J, RAY N J, HAMILTON C A, et al. Free water imaging of the cholinergic system in dementia with Lewy bodies and Alzheimer's disease[J]. Alzheimers Dement, 2023, 19(10): 4549-4563. DOI: 10.1002/alz.13034.
[64]
ARCHER D B, MOORE E E, SHASHIKUMAR N, et al. Free-water metrics in medial temporal lobe white matter tract projections relate to longitudinal cognitive decline[J]. Neurobiol Aging, 2020, 94: 15-23. DOI: 10.1016/j.neurobiolaging.2020.05.001.
[65]
SATHE A, YANG Y, SCHILLING K G, et al. Free-water: A promising structural biomarker for cognitive decline in aging and mild cognitive impairment[J]. Imaging Neurosci (Camb), 2024, 2: 1-16. DOI: 10.1162/imag_a_00293.
[66]
BERGAMINO M, WALSH R R, STOKES A M. Free-water diffusion tensor imaging improves the accuracy and sensitivity of white matter analysis in Alzheimer's disease[J/OL]. Sci Rep, 2021, 11(1): 6990 [2025-04-22]. https://doi.org/10.1038/s41598-021-86505-7. DOI: 10.1038/s41598-021-86505-7.
[67]
MAILLARD P, FLETCHER E, SINGH B, et al. Cerebral white matter free water: A sensitive biomarker of cognition and function[J/OL]. Neurology, 2019, 92(19): e2221-e2231 [2025-04-22]. https://doi.org/10.1212/WNL.0000000000007449. DOI: 10.1212/WNL.0000000000007449.
[68]
GONG N J, CHAN C C, LEUNG L M, et al. Differential microstructural and morphological abnormalities in mild cognitive impairment and Alzheimer's disease: Evidence from cortical and deep gray matter[J]. Hum Brain Mapp, 2017, 38(5): 2495-2508. DOI: 10.1002/hbm.23535.
[69]
JENSEN J H, HELPERN J A. MRI quantification of non-Gaussian water diffusion by kurtosis analysis[J]. NMR Biomed, 2010, 23(7): 698-710. DOI: 10.1002/nbm.1518.
[70]
ZHAN X P, QI W M, SHI Q, et al. Research Progress of Magnetic Resonance Diffusion Imaging Technology in Alzheimer's Disease[J]. Radiologic Practice, 2024, 39(6): 815-819. DOI: 10.13609/j.cnki.1000-0313.2024.06.016.
[71]
NIU X Q, GUO Y, LI T T, et al. Study on Characteristics of Cortical Microstructural Alterations in Patients with Amnestic Mild Cognitive Impairment Based on Diffusion Kurtosis Imaging (DKI) Technology[J]. Radiologic Practice, 2024, 39(9): 1122-1129. DOI: 10.13609/j.cnki.1000-0313.2024.09.002.
[72]
LIU X, LI H, PANG M, et al. Photoacoustic imaging in brain disorders: Current progress and clinical applications[J/OL]. View, 2024, 5(4): 20240023 [2025-04-22]. https://doi.org/10.1002/VIW.2024002. DOI: 10.1002/VIW.2024002.
[73]
DEÁN-BEN X L, ROBIN J, NOZDRIUKHIN D, et al. Deep optoacoustic localization microangiography of ischemic stroke in mice[J/OL]. Nat Commun, 2023, 14(1): 3584 [2025-04-22]. https://pubmed.ncbi.nlm.nih.gov/37328490/. DOI: 10.1038/s41467-023-39069-1.

PREV Research advances in magnetic resonance imaging for cognitive impairment in prediabetes mellitus
NEXT Research progress of MRI in blood-brain barrier injury associated with acute ischemic stroke
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn