Share:
Share this content in WeChat
X
Review
Research progress of MRI in blood-brain barrier injury associated with acute ischemic stroke
SHI Haoyang  QIAN Weiyun  WANG Kaifeng  MO Yongjia  GONG Weiyi 

DOI:10.12015/issn.1674-8034.2025.08.023.


[Abstract] Acute ischemic stroke (AIS) is one of the important diseases causing disability and death among Chinese residents. Blood brain barrier (BBB) injury plays a key role in the pathophysiology and disease progression of AIS. Due to the complexity of its molecular mechanism, research on BBB injury is still not in-depth enough. MRI has been widely applied in the diagnosis and pathological mechanism research of AIS and many other aspects. However, the imaging standards of various techniques still need to be further unified. This article will review the related mechanisms of AIS and BBB injury and the current research and application status of MRI-related techniques, discuss the advantages and disadvantages of different MRI techniques in the assessment of BBB injury, and aim to provide more basis and new ideas for the further development of early precise diagnosis, neuroprotective strategies and individualized clinical treatment of AIS in the future.
[Keywords] ischemic stroke;blood-brain barrier;magnetic resonance imaging;dynamic contrast enhancement imaging;dynamic susceptibility contrast imaging;arterial spin labeling

SHI Haoyang   QIAN Weiyun   WANG Kaifeng   MO Yongjia   GONG Weiyi*  

Department of Medical Imaging, Shengli Oilfield Central Hospital, Dongying 257034, China

Corresponding author: GONG W Y, E-mail: gve566@163.com

Conflicts of interest   None.

Received  2025-05-07
Accepted  2025-08-05
DOI: 10.12015/issn.1674-8034.2025.08.023
DOI:10.12015/issn.1674-8034.2025.08.023.

[1]
China Stroke Prevention and Treatment Report Writing Group. Brief report on stroke prevention and treatment in China, 2021[J]. Chin J of Cerebrovasc Dis, 2023, 20(11): 783-793. DOI: 10.3969/j.issn.1672-5921.2023.11.009.
[2]
Neurology Branch of Chinese Medical Association, Cerebrovascular Group of Chinese Medical Association. Chinese guidelines for diagnosis and treatment of acute ischemic stroke 2023[J]. Chin J Neurol, 2024, 57(6): 523-559. DOI: 10.3760/cma.j.cn113694-20240410-00221.
[3]
HUO X C, GAO F. Chinese Guideline for Endovascular Treatment of Acute Ischemic Stroke 2023[J]. Chin J Stroke, 2023, 18(6): 684-711. DOI: 10.3969/j.issn.1673-5765.2023.06.010.
[4]
Chinese Stroke Society, China Stroke Society Acute Ischemic Stroke Reperfusion Therapy Guidelines 2024 Writing Group, WANG Y J. Chinese Stroke Association Guidelines on Reperfusion Therapy for Acute Ischemic Stroke 2024[J]. Chin J Stroke, 2024, 19(12): 1460-1478. DOI: 10.3969/j.issn.1673-5765.2024.12.014.
[5]
KO K, SUZUKI T, ISHIKAWA R, et al. Ischemic stroke disrupts the endothelial glycocalyx through activation of proHPSE via acrolein exposure[J]. Journal of Biological Chemistry, 2020, 295(52): 18614-18624. DOI: 10.1074/jbc.RA120.015105.
[6]
D'SOUZA A, DAVE K M, STETLER R A, et al. Targeting the blood-brain barrier for the delivery of stroke therapies[J]. Adv Drug Deliv Rev, 2021, 171: 332-351. DOI: 10.1016/j.addr.2021.01.015.
[7]
SEGURA-COLLAR B, MATA-MARTÍNEZ P, HERNÁNDEZ-LAÍN A, et al. Blood-Brain Barrier Disruption: A Common Driver of Central Nervous System Diseases[J]. Neuroscientist, 2022, 28(3): 222-237. DOI: 10.1177/1073858420985838.
[8]
SHIMIZU F, NAKAMORI M. Blood–Brain Barrier Disruption in Neuroimmunological Disease[J/OL]. Int J Mol Sci, 2024, 25(19): 10625 [2025-05-07]. https://pubmed.ncbi.nlm.nih.gov/39408955/. DOI: 10.3390/ijms251910625.
[9]
CHE J, SUN Y, DENG Y, et al. Blood-brain barrier disruption: a culprit of cognitive decline?[J/OL]. Fluids Barriers CNS, 2024, 21(1): 63 [2025-05-07]. https://pubmed.ncbi.nlm.nih.gov/39113115/. DOI: 10.1186/s12987-024-00563-3.
[10]
SEGARRA M, ABURTO M R, ACKER-PALMER A. Blood-Brain Barrier Dynamics to Maintain Brain Homeostasis[J]. Trends Neurosci, 2021, 44(5): 393-405. DOI: 10.1016/j.tins.2020.12.002.
[11]
KEMPURAJ D, DOURVETAKIS K D, COHEN J, et al. Neurovascular unit, neuroinflammation and neurodegeneration markers in brain disorders[J/OL]. Front Cell Neurosci, 2024, 18: 1491952 [2025-05-07]. https://doi.org/10.3389/fncel.2024.1491952. DOI: 10.3389/fncel.2024.1491952.
[12]
WANG L, XIONG X, ZHANG L, et al. Neurovascular Unit: A critical role in ischemic stroke[J]. CNS Neurosci Ther, 2021, 27(1): 7-16. DOI: 10.1111/cns.13561.
[13]
MCCONNELL H L, MISHRA A. Cells of the Blood-Brain Barrier: An Overview of the Neurovascular Unit in Health and Disease[J]. Methods Mol Biol, 2022, 2492: 3-24. DOI: 10.1007/978-1-0716-2289-6_1.
[14]
BENZ F, LIEBNER S. Structure and Function of the Blood-Brain Barrier (BBB)[J]. Handb Exp Pharmacol, 2022, 273: 3-31. DOI: 10.1007/164_2020_404.
[15]
ALAHMARI A. Blood-Brain Barrier Overview: Structural and Functional Correlation[J/OL]. Neural Plast, 2021, 2021: 6564585 [2025-05-07]. https://doi.org/10.1155/2021/6564585. DOI: 10.1155/2021/6564585.
[16]
HALDER S K, SAPKOTA A, MILNER R. The importance of laminin at the blood-brain barrier[J]. Neural Regen Res, 2023, 18(12): 2557-2563. DOI: 10.4103/1673-5374.373677.
[17]
DITHMER S, BLASIG I E, FRASER P A, et al. The Basic Requirement of Tight Junction Proteins in Blood-Brain Barrier Function and Their Role in Pathologies[J/OL]. International Journal of Molecular Sciences, 2024, 25(11): 5601 [2025-05-07]. https://doi.org/10.3390/ijms25115601. DOI: 10.3390/ijms25115601.
[18]
DIAZ-CASTRO B, ROBEL S, MISHRA A. Astrocyte Endfeet in Brain Function and Pathology: Open Questions[J]. Annu Rev Neurosci, 2023, 46: 101-121. DOI: 10.1146/annurev-neuro-091922-031205.
[19]
GIROLAMO F, ERREDE M, BIZZOCA A, et al. Central Nervous System Pericytes Contribute to Health and Disease[J/OL]. Cells, 2022, 11(10): 1707 [2025-05-07]. https://doi.org/10.3390/cells11101707. DOI: 10.3390/cells11101707.
[20]
MANU D R, SLEVIN M, BARCUTEAN L, et al. Astrocyte Involvement in Blood-Brain Barrier Function: A Critical Update Highlighting Novel, Complex, Neurovascular Interactions[J/OL]. Int J Mol Sci, 2023, 24(24): 17146 [2025-05-07]. https://doi.org/10.3390/ijms242417146. DOI: 10.3390/ijms242417146.
[21]
SCHIERA G, DI LIEGRO C M, SCHIRO G, et al. Involvement of Astrocytes in the Formation, Maintenance, and Function of the Blood-Brain Barrier[J/OL]. Cells, 2024, 13(2): 150 [2025-05-07]. https://doi.org/10.3390/cells13020150. DOI: 10.3390/cells13020150.
[22]
HAN H, LEE S, GAO G, et al. Cerebrovascular-Specific Extracellular Matrix Bioink Promotes Blood-Brain Barrier Properties[J/OL]. Biomater Res, 2024, 28: 0115 [2025-05-07]. https://doi.org/10.34133/bmr.0115. DOI: 10.34133/bmr.0115.
[23]
KARAMANOS N K, THEOCHARIS A D, PIPERIGKOU Z, et al. A guide to the composition and functions of the extracellular matrix[J]. Febs J, 2021, 288(24): 6850-6912. DOI: 10.1111/febs.15776.
[24]
LIANG Y, YU Y, LIU J, et al. Blood-brain barrier disruption and hemorrhagic transformation in acute stroke before endovascular reperfusion therapy[J/OL]. Front Neurol, 2024, 15: 1349369 [2025-05-07]. https://doi.org/10.3389/fneur.2024.1349369. DOI: 10.3389/fneur.2024.1349369.
[25]
ARBA F, RINALDI C, CAIMANO D, et al. Blood-Brain Barrier Disruption and Hemorrhagic Transformation in Acute Ischemic Stroke: Systematic Review and Meta-Analysis[J/OL]. Front Neurol, 2020, 11: 594613 [2025-05-07]. https://doi.org/10.3389/fneur.2020.594613. DOI: 10.3389/fneur.2020.594613.
[26]
BROOCKS G, MINNERUP J, KAMALIAN S, et al. Editorial: Mechanisms, Measurement, and Management of Vasogenic Edema After Stroke[J/OL]. Front Neurol, 2022, 13: 865078 [2025-05-07]. https://doi.org/10.3389/fneur.2022.865078. DOI: 10.3389/fneur.2022.865078.
[27]
ARBA F, PICCARDI B, PALUMBO V, et al. Blood-brain barrier leakage and hemorrhagic transformation: The Reperfusion Injury in Ischemic StroKe (RISK) study[J]. Eur J Neurol, 2021, 28(9): 3147-3154. DOI: 10.1111/ene.14985.
[28]
BERNARDO-CASTRO S, SOUSA J A, MARTINS E, et al. The evolution of blood-brain barrier permeability changes after stroke and its implications on clinical outcome: A systematic review and meta-analysis[J]. Int J Stroke, 2023, 18(7): 783-794. DOI: 10.1177/17474930231166306.
[29]
GRINCHEVSKAYA L R, SALIKHOVA D I, SILACHEV D N, et al. Neural and Glial Regulation of Angiogenesis in CNS in Ischemic Stroke[J]. Bull Exp Biol Med, 2024, 177(4): 528-533. DOI: 10.1007/s10517-024-06219-4.
[30]
MA Y, YANG S, HE Q, et al. The Role of Immune Cells in Post-Stroke Angiogenesis and Neuronal Remodeling: The Known and the Unknown[J/OL]. Front Immunol, 2021, 12: 784098 [2025-05-07]. https://doi.org/10.3389/fimmu.2021.784098. DOI: 10.3389/fimmu.2021.784098.
[31]
WANG Y, LIU W, GENG P, et al. Role of Crosstalk between Glial Cells and Immune Cells in Blood-Brain Barrier Damage and Protection after Acute Ischemic Stroke[J]. Aging Dis, 2023, 15(6): 2507-2525. DOI: 10.14336/AD.2023.1010.
[32]
GUO X, LIU R, JIA M, et al. Ischemia Reperfusion Injury Induced Blood Brain Barrier Dysfunction and the Involved Molecular Mechanism[J]. Neurochem Res, 2023, 48(8): 2320-2334. DOI: 10.1007/s11064-023-03923-x.
[33]
LOCHHEAD J J, RONALDSON P T, DAVIS T P. The role of oxidative stress in blood-brain barrier disruption during ischemic stroke: Antioxidants in clinical trials[J/OL]. Biochem Pharmacol, 2024, 228: 116186 [2025-05-07]. https://doi.org/10.1016/j.bcp.2024.116186. DOI: 10.1016/j.bcp.2024.116186.
[34]
CANDELARIO-JALIL E, DIJKHUIZEN R M, MAGNUS T. Neuroinflammation, Stroke, Blood-Brain Barrier Dysfunction, and Imaging Modalities[J]. Stroke, 2022, 53(5): 1473-1486. DOI: 10.1161/strokeaha.122.036946.
[35]
LIU Y, MU Y, LI Z, et al. Extracellular matrix metalloproteinase inducer in brain ischemia and intracerebral hemorrhage[J/OL]. Front Immunol, 2022, 13: 986469 [2025-05-07]. https://doi.org/10.3389/fimmu.2022.986469. DOI: 10.3389/fimmu.2022.986469.
[36]
LUO Y, JIAO L, WANG T, et al. VEGF, a Key Factor for Blood Brain Barrier Injury After Cerebral Ischemic Stroke[J]. Aging Dis, 2022, 13(3): 647-654. DOI: 10.14336/ad.2021.1121.
[37]
SASANNIA S, LEIGH R, BASTANI P B, et al. Blood-brain barrier breakdown in brain ischemia: Insights from MRI perfusion imaging[J]. Neurotherapeutics, 2025, 22(1): e00516 [2025-05-07]. https://pubmed.ncbi.nlm.nih.gov/39709246/. DOI: 10.1016/j.neurot.2024.e00516.
[38]
LEE R-L, FUNK K E. Imaging blood-brain barrier disruption in neuroinflammation and Alzheimer's disease[J/OL]. Front Aging Neurosci, 2023, 15: 1144036 [2025-05-07]. https://pubmed.ncbi.nlm.nih.gov/37009464/. DOI: 10.3389/fnagi.2023.1144036.
[39]
BERNAL J, VALDÉS-HERNÁNDEZ M D C, ESCUDERO J, et al. A four-dimensional computational model of dynamic contrast-enhanced magnetic resonance imaging measurement of subtle blood-brain barrier leakage[J/OL]. NeuroImage, 2021, 230: 117786 [2025-05-07]. https://doi.org/10.1016/j.neuroimage.2021.117786. DOI: 10.1016/j.neuroimage.2021.117786.
[40]
KALA D, SULC V, OLSEROVA A, et al. Evaluation of blood-brain barrier integrity by the analysis of dynamic contrast-enhanced MRI - a comparison of quantitative and semi-quantitative methods[J]. Physiol Res, 2022, 71(S2): S259-S275. DOI: 10.33549/physiolres.934998.
[41]
MERALI Z, HUANG K, MIKULIS D, et al. Evolution of blood-brain-barrier permeability after acute ischemic stroke[J/OL]. Plos One, 2017, 12(2): e0171558 [2025-05-07]. https://doi.org/10.1371/journal.pone.0171558. DOI: 10.1371/journal.pone.0171558.
[42]
HUANG R, ZHANG L, DENG L, et al. Diagnostic and prediction value of synthetic magnetic resonance imaging in acute ischemic stroke patients[J]. Adv Clin Exp Med, 2025, 34(2): 179-186. DOI: 10.17219/acem/185496.
[43]
SEO Y, KIM J, CHANG M C, et al. Relationship between treatment types and blood-brain barrier disruption in patients with acute ischemic stroke: Two case reports[J]. World J Clin Cases, 2022, 10(7): 2351-2356. DOI: 10.12998/wjcc.v10.i7.2351.
[44]
CANJELS L P W, JANSEN J F A, VAN DEN KERKHOF M, et al. 7T dynamic contrast-enhanced MRI for the detection of subtle blood-brain barrier leakage[J]. J Neuroimaging, 2021, 31(5): 902-911. DOI: 10.1111/jon.12894.
[45]
NG F C, CHURILOV L, YASSI N, et al. Microvascular Dysfunction in Blood-Brain Barrier Disruption and Hypoperfusion Within the Infarct Posttreatment Are Associated With Cerebral Edema[J]. Stroke, 2022, 53(5): 1597-1605. DOI: 10.1161/strokeaha.121.036104.
[46]
NäGELE F L, SCHELDEMAN L, WOUTERS A, et al. Blood-Brain Barrier Leakage in the Penumbra Is Associated With Infarction on Follow-Up Imaging in Acute Ischemic Stroke[J]. Stroke, 2025, 56(7): 1832-1842. DOI: 10.1161/strokeaha.124.050171.
[47]
LIEBESKIND D S, SABER H, XIANG B, et al. Collateral Circulation in Thrombectomy for Stroke After 6 to 24 Hours in the DAWN Trial[J]. Stroke, 2022, 53(3): 742-748. DOI: 10.1161/strokeaha.121.034471.
[48]
BANI-SADR A, MECHTOUFF L, HERMIER M, et al. Cerebral collaterals are associated with pre-treatment brain-blood barrier permeability in acute ischemic stroke patients[J]. Eur Radiol, 2024, 34(12): 8005-8012. DOI: 10.1007/s00330-024-10830-4.
[49]
LI Y, SADIQ A, WANG Z. Arterial Spin Labelling-Based Blood-Brain Barrier Assessment and Its Applications[J]. Investig Magn Reson Imaging, 2022, 26(4): 229-236. DOI: 10.13104/imri.2022.26.4.229.
[50]
WU L, LIU Y, ZHU L, et al. MRI arterial spin labeling in evaluating hemorrhagic transformation following endovascular recanalization of subacute ischemic stroke[J/OL]. Front Neurosci, 2023, 17: 1105816 [2025-05-07]. https://doi.org/10.3389/fnins.2023.1105816. DOI: 10.3389/fnins.2023.1105816.
[51]
SHAO X, MA S J, CASEY M, et al. Mapping water exchange across the blood-brain barrier using 3D diffusion-prepared arterial spin labeled perfusion MRI[J]. Magn Reson Med, 2019, 81(5): 3065-3079. DOI: 10.1002/mrm.27632.
[52]
SHAO X, ZHAO C, SHOU Q, et al. Quantification of blood-brain barrier water exchange and permeability with multidelay diffusion-weighted pseudo-continuous arterial spin labeling[J]. Magn Reson Med, 2023, 89(5): 1990-2004. DOI: 10.1002/mrm.29581.
[53]
DIAMANDI J, RAIMONDO C, PIPER K, et al. Use of multi-modal non-contrast MRI to predict functional outcomes after stroke: A study using DP-pCASL, DTI, NODDI, and MAP MRI[J/OL]. Neuroimage Clin, 2025, 45: 103742 [2025-05-07]. https://doi.org/10.1016/j.nicl.2025.103742. DOI: 10.1016/j.nicl.2025.103742.
[54]
MOUCHTOURIS N, AILES I, GOOCH R, et al. Quantifying blood-brain barrier permeability in patients with ischemic stroke using non-contrast MRI[J]. Magn Reson Imaging, 2024, 109: 165-172. DOI: 10.1016/j.mri.2024.03.027.
[55]
MOUCHTOURIS N, AILES I, CHANG K, et al. The impact of mechanical thrombectomy on the blood-brain barrier in patients with acute ischemic stroke: A non-contrast MR imaging study using DP-pCASL and NODDI[J/OL]. Neuroimage Clin, 2024, 43: 103629 [2025-05-07]. https://doi.org/10.1016/j.nicl.2024.103629. DOI: 10.1016/j.nicl.2024.103629.
[56]
PAN L J, WANG J, ZHAO Y X, et al. Assessment of Blood-Brain Barrier Disruption and Prediction of HemorrhagicTransformation using DCE-MRI Combined with ASL in Ischemic Stroke[J]. Chin Comput Med Imag, 2021, 27(3): 199-203. DOI: 10.19627/j.cnki.cn31-1700/th.2021.03.005.
[57]
LIN Z, JIANG D, LIU D, et al. Noncontrast assessment of blood-brain barrier permeability to water: Shorter acquisition, test-retest reproducibility, and comparison with contrast-based method[J]. Magn Reson Med, 2021, 86(1): 143-156. DOI: 10.1002/mrm.28687.
[58]
LIN Z, SUR S, LIU P, et al. Blood-Brain Barrier Breakdown in Relationship to Alzheimer and Vascular Disease[J]. Ann Neurol, 2021, 90(2): 227-238. DOI: 10.1002/ana.26134.
[59]
XIONG C, YU Z, YIN Y, et al. Longitudinal changes of blood-brain barrier and transcytolemmal water exchange permeability in Alzheimer's disease mice: A non-contrast MRI study[J/OL]. Neuroimage, 2025, 310: 121141 [2025-05-07]. https://doi.org/10.1016/j.neuroimage.2025.121141. DOI: 10.1016/j.neuroimage.2025.121141.
[60]
FOURNIER A P, MORVAN M I, MARTINEZ DE LIZARRONDO S, et al. Immuno-MRI for Stroke Diagnosis and Prognosis[J]. Neuroscience, 2024, 550: 53-61. DOI: 10.1016/j.neuroscience.2023.12.007.
[61]
ZHANG Y, WANG Y, LI Z, et al. Vascular-water-exchange MRI (VEXI) enables the detection of subtle AXR alterations in Alzheimer's disease without MRI contrast agent, which may relate to BBB integrity[J/OL]. Neuroimage, 2023, 270: 119951 [2025-05-07]. https://doi.org/10.1016/j.neuroimage.2023.119951. DOI: 10.1016/j.neuroimage.2023.119951.

PREV Research progress in the application of glymphatic system-based imaging techniques in cerebral small vessel disease-related cognitive impairment
NEXT Advances in deep medullary veins and AI technology in imaging markers of cerebral small vessel disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn