Share:
Share this content in WeChat
X
Review
Progress in MRI on brain imaging of patients with cervical spondylotic myelopathy
YI Jiayuan  HE Laichang 

DOI:10.12015/issn.1674-8034.2025.08.028.


[Abstract] Cervical spondylotic myelopathy (CSM) is the leading cause of spinal cord dysfunction in adults worldwide. Recent studies have indicated the potential for irreversible damage, neural repair, and reorganization processes in the superior median brain of CSM patients. Therefore, exploring the underlying pathophysiological mechanisms is imperative for advancing the identification, treatment, and other aspects of CSM. Currently, although several review articles have focused on imaging alterations in neural remodeling of CSM, there remains a lack of systematic collation and analysis of recent neuroimaging studies in this field. This paper summarizes and reviews recent studies that used MRI to investigate cerebral damage, repair, and reorganization in CSM patients across structural, functional, metabolic, and hemodynamic perfusion domains. We critically examine current methodological challenges and propose future research trajectories, aiming to establish an imaging-derived framework for deciphering CSM-related neurobiological mechanisms. Ultimately, this work seeks to pioneer non-invasive diagnostic strategies and stimulate novel therapeutic approaches.
[Keywords] spinal cord injury;cervical spondylotic myelopathy;magnetic resonance imaging;structural magnetic resonance imaging;resting-state functional magnetic resonance imaging;neuroimaging biomarkers

YI Jiayuan   HE Laichang*  

Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China

Corresponding author: HE L C, E-mail: laichang_he@163.com

Conflicts of interest   None.

Received  2025-04-15
Accepted  2025-08-05
DOI: 10.12015/issn.1674-8034.2025.08.028
DOI:10.12015/issn.1674-8034.2025.08.028.

[1]
HEJRATI N, PEDRO K, ALVI M ALI, et al. Degenerative cervical myelopathy: Where have we been Where are we now Where are we going [J]. Acta Neurochir (Wien), 2023, 165(5): 1105-1119. DOI: 10.1007/s00701-023-05558-x.
[2]
SHARMA S, SIAL A, SIMA S, et al. Clinical signs and symptoms for degenerative cervical myelopathy: a scoping review of case-control studies to facilitate early diagnosis among healthcare professionals with stakeholder engagement[J]. Spinal Cord, 2025, 63(3): 171-180. DOI: 10.1038/s41393-025-01065-1.
[3]
MO W, YUAN W. Clinical guidelines for diagnosis and treatment of cervical spondylotic myelopathy with the integrated traditional Chinese and Western medicine(2023)[J]. China J Orthop Traumatol, 2024, 37(1): 103-110. DOI: 10.12200/j.issn.1003-0034.20230767.
[4]
BALMACENO-CRISS M, SINGH M, DAHER M, et al. Degenerative cervical myelopathy: history, physical examination, and diagnosis[J/OL]. J Clin Med, 2024, 13(23): 7139 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/39685599/. DOI: 10.3390/jcm13237139.
[5]
HIRAYAMA Y, MOWFORTH O D, DAVIES B M, et al. Determinants of quality of life in degenerative cervical myelopathy: a systematic review[J]. Br J Neurosurg, 2023, 37(1): 71-81. DOI: 10.1080/02688697.2021.1999390.
[6]
SARRAJ M, HACHE P, FOROUTAN F, et al. Natural history of degenerative cervical myelopathy: a meta-analysis and neurologic deterioration survival curve synthesis[J]. Spine J, 2024, 24(1): 46-56. DOI: 10.1016/j.spinee.2023.07.020.
[7]
DAVIES B M, STUBBS D, GILLESPIE C S, et al. Life expectancy in patients with degenerative cervical myelopathy is currently reduced but can be restored with timely treatment[J]. Acta Neurochir (Wien), 2023, 165(5): 1133-1140. DOI: 10.1007/s00701-023-05515-8.
[8]
CERVELLINI M, FELLER D, MASELLI F, et al. Understanding degenerative cervical myelopathy in musculoskeletal practice[J]. J Man Manip Ther, 2025, 33(3): 207-223. DOI: 10.1080/10669817.2025.2465728.
[9]
GHOGAWALA Z, TERRIN N, DUNBAR M R, et al. Effect of ventral vs dorsal spinal surgery on patient-reported physical functioning in patients with cervical spondylotic myelopathy: a randomized clinical trial[J]. JAMA, 2021, 325(10): 942-951. DOI: 10.1001/jama.2021.1233.
[10]
DONNALLY C J, PATEL P D, CANSECO J A, et al. Current management of cervical spondylotic myelopathy[J]. Clin Spine Surg, 2022, 35(1): E68-E76. DOI: 10.1097/BSD.0000000000001113.
[11]
SAUNDERS L M, SANDHU H S, MCBRIDE L, et al. A retrospective study of degenerative cervical myelopathy and the surgical management within northern Ireland[J/OL]. Cureus, 2023, 15(11): e49513 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/38024056/. DOI: 10.7759/cureus.49513.
[12]
AL-SHAWWA A, OST K, ANDERSON D, et al. Advanced MRI metrics improve the prediction of baseline disease severity for individuals with degenerative cervical myelopathy[J]. Spine J, 2024, 24(9): 1605-1614. DOI: 10.1016/j.spinee.2024.04.028.
[13]
GRODZINSKI B, BESTWICK H, BHATTI F, et al. Research activity amongst DCM research priorities[J]. Acta Neurochir (Wien), 2021, 163(6): 1561-1568. DOI: 10.1007/s00701-021-04767-6.
[14]
LEVETT J J, GEORGIOPOULOS M, MARTEL S, et al. Pharmacological treatment of degenerative cervical myelopathy: a critical review of current evidence[J]. Neurospine, 2024, 21(2): 375-400. DOI: 10.14245/ns.2448140.070.
[15]
MOWFORTH O D, DAVIES B M, GOH S, et al. Research inefficiency in degenerative cervical myelopathy: findings of a systematic review on research activity over the past 20 years[J]. Global Spine J, 2020, 10(4): 476-485. DOI: 10.1177/2192568219847439.
[16]
TU J, CASTILLO J V, DAS A, et al. Degenerative cervical myelopathy: insights into its pathobiology and molecular mechanisms[J/OL]. J Clin Med, 2021, 10(6): 1214 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/33804008/. DOI: 10.3390/jcm10061214.
[17]
HE Y N, LI L, LIU J H. The whole-brain voxel-based morphometry study in early stage of T2DM patients[J/OL]. Brain Behav, 2022, 12(3): e2497 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/35138040/. DOI: 10.1002/brb3.2497.
[18]
GOTO M, ABE O, HAGIWARA A, et al. Advantages of using both voxel- and surface-based morphometry in cortical morphology analysis: a review of various applications[J]. Magn Reson Med Sci, 2022, 21(1): 41-57. DOI: 10.2463/mrms.rev.2021-0096.
[19]
WANG C C, SANVITO F, OUGHOURLIAN T C, et al. Structural relationship between cerebral gray and white matter alterations in degenerative cervical myelopathy[J]. Tomography, 2023, 9(1): 315-327. DOI: 10.3390/tomography9010025.
[20]
KUANG C L, ZHA Y F. Neurodegeneration within the rostral spinal cord is associated with brain gray matter volume atrophy in the early stage of cervical spondylotic myelopathy[J]. Spinal Cord, 2024, 62(5): 214-220. DOI: 10.1038/s41393-024-00971-0.
[21]
FILIMONOVA E, VASILENKO I, KUBETSKY Y, et al. Brainstem and subcortical regions volume loss in patients with degenerative cervical myelopathy and its association with spinal cord compression severity[J/OL]. Clin Neurol Neurosurg, 2023, 233: 107943 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/37634395/. DOI: 10.1016/j.clineuro.2023.107943.
[22]
ZHOU C. A preliminary study of gray matter volume and functional connectivity changes in primary motor cortex subregions in patients with spinal cervical spondylosis[D]. Nanchang: Nanchang University, 2024. DOI: 10.27232/d.cnki.gnchu.2024.003496.
[23]
JÜTTEN K, MAINZ V, SCHUBERT G A, et al. Cortical volume reductions as a sign of secondary cerebral and cerebellar impairment in patients with degenerative cervical myelopathy[J/OL]. Neuroimage Clin, 2021, 30: 102624 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/33773163/. DOI: 10.1016/j.nicl.2021.102624.
[24]
LIU M, TAN Y M, ZHANG C L, et al. Cortical anatomy plasticity in cases of cervical spondylotic myelopathy associated with decompression surgery: A strobe-compliant study of structural magnetic resonance imaging[J/OL]. Medicine (Baltimore), 2021, 100(4): e24190 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/33530210/. DOI: 10.1097/MD.0000000000024190.
[25]
TIAN A X, GAO H Z, WANG Z, et al. Brain structural correlates of postoperative axial pain in degenerative cervical myelopathy patients following posterior cervical decompression surgery: a voxel-based morphometry study[J/OL]. BMC Med Imaging, 2023, 23(1): 13 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/37726693/. DOI: 10.1186/s12880-023-01057-8.
[26]
FREUND P, BOLLER V, EMMENEGGER T M, et al. Quantifying neurodegeneration of the cervical cord and brain in degenerative cervical myelopathy: a multicentre study using quantitative magnetic resonance imaging[J/OL]. Eur J Neurol, 2024, 31(7): e16297 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/38713645/. DOI: 10.1111/ene.16297.
[27]
WOODWORTH D C, HOLLY L T, MAYER E A, et al. Alterations in cortical thickness and subcortical volume are associated with neurological symptoms and neck pain in patients with cervical spondylosis[J]. Neurosurgery, 2019, 84(3): 588-598. DOI: 10.1093/neuros/nyy066.
[28]
MUHAMMAD F, WEBER K A, ROHAN M, et al. Patterns of cortical thickness alterations in degenerative cervical myelopathy: associations with dexterity and gait dysfunctions[J/OL]. Brain Commun, 2024, 6(5): fcae279 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/39364309/. DOI: 10.1093/braincomms/fcae279.
[29]
VALLOTTON K, DAVID G, HUPP M, et al. Tracking white and gray matter degeneration along the spinal cord axis in degenerative cervical myelopathy[J]. J Neurotrauma, 2021, 38(21): 2978-2987. DOI: 10.1089/neu.2021.0148.
[30]
ZHAN Y R. Study on White Matter Microstructure in Patients with Cervical Spondylotic Myelopathy Based on TBSS[D]. Nanchang: Nanchang University, 2020. DOI: 10.27232/d.cnki.gnchu.2020.000740.
[31]
SALISBURY D F, SEEBOLD D, LONGENECKER J M, et al. White matter tracts differentially associated with auditory hallucinations in first-episode psychosis: a correlational tractography diffusion spectrum imaging study[J]. Schizophr Res, 2024, 265: 4-13. DOI: 10.1016/j.schres.2023.06.001.
[32]
SUN F F, HUANG Y W, WANG J R, et al. Research progress in diffusion spectrum imaging[J/OL]. Brain Sci, 2023, 13(10): 1497 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/37891866/. DOI: 10.3390/brainsci13101497.
[33]
WANG C C, HOLLY L T, OUGHOURLIAN T, et al. Detection of cerebral reorganization associated with degenerative cervical myelopathy using diffusion spectral imaging (DSI)[J]. J Clin Neurosci, 2021, 86: 164-173. DOI: 10.1016/j.jocn.2021.01.011.
[34]
BEHESHTIAN E, JALILIANHASANPOUR R, SHANECHI A M, et al. Identification of the somatomotor network from language task-based fMRI compared with resting-state fMRI in patients with brain lesions[J]. Radiology, 2021, 301(1): 178-184. DOI: 10.1148/radiol.2021204594.
[35]
CRONIN A E, DETOMBE S A, DUGGAL C A, et al. Spinal cord compression is associated with brain plasticity in degenerative cervical myelopathy[J/OL]. Brain Commun, 2021, 3(3): fcab131 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/34396102/. DOI: 10.1093/braincomms/fcab131.
[36]
DONG Y, HOLLY L T, ALBISTEGUI-DUBOIS R, et al. Compensatory cerebral adaptations before and evolving changes after surgical decompression in cervical spondylotic myelopathy[J]. J Neurosurg Spine, 2008, 9(6): 538-551. DOI: 10.3171/SPI.2008.10.0831.
[37]
BHAGAVATULA I D, SHUKLA D, SADASHIVA N, et al. Functional cortical reorganization in cases of cervical spondylotic myelopathy and changes associated with surgery[J/OL]. Neurosurg Focus, 2016, 40(6): E2 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/27246485/. DOI: 10.3171/2016.3.FOCUS1635.
[38]
HRABÁLEK L, HOK P, HLUŠTÍK P, et al. Longitudinal brain activation changes related to electrophysiological findings in patients with cervical spondylotic myelopathy before and after spinal cord decompression: an fMRI study[J]. Acta Neurochir (Wien), 2018, 160(5): 923-932. DOI: 10.1007/s00701-018-3520-1.
[39]
POLIMENI J R, LEWIS L D. Imaging faster neural dynamics with fast fMRI: A need for updated models of the hemodynamic response[J/OL]. Prog Neurobiol, 2021, 207: 102174 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/34525404/. DOI: 10.1016/j.pneurobio.2021.102174.
[40]
ZHAO R, GUO X, WANG Y, et al. Functional MRI evidence for primary motor cortex plasticity contributes to the disease's severity and prognosis of cervical spondylotic myelopathy patients[J]. Eur Radiol, 2022, 32(6): 3693-3704. DOI: 10.1007/s00330-021-08488-3.
[41]
CHANG J C, ZHU K, ZHANG S Y, et al. Dysregulated neural activity between the thalamus and cerebral cortex mediates cortical reorganization in cervical spondylotic myelopathy[J/OL]. Brain Res Bull, 2023, 205: 110837 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/38043647/. DOI: 10.1016/j.brainresbull.2023.110837.
[42]
GUO X, LI J, SU Q, et al. Transcriptional correlates of frequency-dependent brain functional activity associated with symptom severity in degenerative cervical myelopathy[J/OL]. Neuroimage, 2023, 284: 120451 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/37949259/. DOI: 10.1016/j.neuroimage.2023.120451.
[43]
SHAO Z W, TAN Y M, ZHAN Y R, et al. Modular organization of functional brain networks in patients with degenerative cervical myelopathy[J/OL]. Sci Rep, 2024, 14(1): 8593 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/38615051/. DOI: 10.1038/s41598-024-58764-7.
[44]
GE Y Q, ZHAO R, GUO X, et al. Systematic investigation of cerebellar functional alterations and their association with surgical outcomes in patients with degenerative cervical myelopathy: a resting-state fMRI study[J]. Radiol Med, 2024, 129(2): 280-290. DOI: 10.1007/s11547-024-01776-0.
[45]
TAN Y M, ZHOU F Q, HE L C, et al. Alteration of cerebral regional homogeneity in cervical spondylotic myelopathy: a resting state functional magnetic resonance imaging study[J]. J Clin Radiol, 2015, 34(10): 1544-1548. DOI: 10.13437/j.cnki.jcr.2015.10.003.
[46]
KUANG C L, ZHA Y F. Abnormal intrinsic functional activity in patients with cervical spondylotic myelopathy: a resting-state fMRI study[J]. Neuropsychiatr Dis Treat, 2019, 15: 2371-2383. DOI: 10.2147/NDT.S209952.
[47]
FAN N J, ZHAO B, LIU L Y, et al. Dynamic and static amplitude of low-frequency fluctuation is a potential biomarker for predicting prognosis of degenerative cervical myelopathy patients: A preliminary resting-state fMRI study[J/OL]. Front Neurol, 2022, 13: 829714 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/35444605/. DOI: 10.3389/fneur.2022.829714.
[48]
SU Q, LI J, CHU X, et al. Preoperative pain hypersensitivity is associated with axial pain after posterior cervical spinal surgeries in degenerative cervical myelopathy patients: a preliminary resting-state fMRI study[J/OL]. Insights Imaging, 2023, 14(1): 16 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/36690763/. DOI: 10.1186/s13244-022-01332-2.
[49]
CAÑETE-MASSÉ C, CARBÓ-CARRETÉ M, PERÓ-CEBOLLERO M, et al. Abnormal degree centrality and functional connectivity in Down syndrome: A resting-state fMRI study[J/OL]. Int J Clin Health Psychol, 2023, 23(1): 100341 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/36262644/. DOI: 10.1016/j.ijchp.2022.100341.
[50]
TAN Y M, SHAO Z W, WU K F, et al. Resting-state brain plasticity is associated with the severity in cervical spondylotic myelopathy[J/OL]. BMC Musculoskelet Disord, 2024, 25(1): 450 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/38844898/. DOI: 10.1186/s12891-024-07539-2.
[51]
KHADEM-REZA Z K, SHAHRAM M A, ZARE H. Altered resting-state functional connectivity of the brain in children with autism spectrum disorder[J]. Radiol Phys Technol, 2023, 16(2): 284-291. DOI: 10.1007/s12194-023-00717-2.
[52]
WANG C C, ELLINGSON B M, OUGHOURLIAN T C, et al. Evolution of brain functional plasticity associated with increasing symptom severity in degenerative cervical myelopathy[J/OL]. EBioMedicine, 2022, 84: 104255 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/36116214/. DOI: 10.1016/j.ebiom.2022.104255.
[53]
ZHAO G S. Abnormal Intrinsic Brain Functional Network Dynamics in Patientswith Cervical Spondylotic Myelopathy Based on Graph Theory[D]. Nanchang: Nanchang University, 2022. DOI: 10.27232/d.cnki.gnchu.2022.000286.
[54]
CAO Y, ZHAN Y R, DU M, et al. Disruption of human brain connectivity networks in patients with cervical spondylotic myelopathy[J]. Quant Imaging Med Surg, 2021, 11(8): 3418-3430. DOI: 10.21037/qims-20-874.
[55]
YAO J Y, XIE B Y, NI H Y, et al. Characterizing brain network alterations in cervical spondylotic myelopathy using static and dynamic functional network connectivity and machine learning[J/OL]. J Clin Neurosci, 2025, 133: 111053 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/39823911/. DOI: 10.1016/j.jocn.2025.111053.
[56]
STEIN A, ZHU C, DU F, et al. Magnetic resonance spectroscopy studies of brain energy metabolism in schizophrenia: progression from prodrome to chronic psychosis[J]. Curr Psychiatry Rep, 2023, 25(11): 659-669. DOI: 10.1007/s11920-023-01457-1.
[57]
ALEKSANDEREK I, MCGREGOR S M K, STEVENS T K, et al. Cervical spondylotic myelopathy: metabolite changes in the primary motor cortex after surgery[J]. Radiology, 2017, 282(3): 817-825. DOI: 10.1148/radiol.2016152083.
[58]
ZHENG J Q, ZHANG Y J, ZHAO B G, et al. Metabolic changes of thalamus assessed by 1H-MRS spectroscopy in patients of cervical spondylotic myelopathy following decompression surgery[J/OL]. Front Neurol, 2025, 15: 1513896 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/39845933/. DOI: 10.3389/fneur.2024.1513896.
[59]
CRACIUNAS S C, GORGAN M R, IANOSI B, et al. Remote motor system metabolic profile and surgery outcome in cervical spondylotic myelopathy[J]. J Neurosurg Spine, 2017, 26(6): 668-678. DOI: 10.3171/2016.10.SPINE16479.
[60]
GOHMANN R F, BLUME C, ZVYAGINTSEV M, et al. Cervical spondylotic myelopathy: Changes of fractional anisotropy in the spinal cord and magnetic resonance spectroscopy of the primary motor cortex in relation to clinical symptoms and their duration[J]. Eur J Radiol, 2019, 116: 55-60. DOI: 10.1016/j.ejrad.2019.04.009.
[61]
ZHANG L, ZHANG Y J, WANG N, et al. Changes to dorsal thalamic metabolites and thalamocortical tract fiber injury in patients with cervical spondylotic myelopathy[J/OL]. Magn Reson Med Sci, 2024: mp.2024-mp.2079 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/39631868/. DOI: 10.2463/mrms.mp.2024-0079.
[62]
WANG X Y, TIAN X N, ZHANG Y J, et al. Predictive value of dynamic diffusion tensor imaging for surgical outcomes in patients with cervical spondylotic myelopathy[J/OL]. BMC Med Imaging, 2024, 24(1): 260 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/39354411/. DOI: 10.1186/s12880-024-01428-9.
[63]
IUTAKA T, DE FREITAS M B, OMAR S S, et al. Arterial spin labeling: techniques, clinical applications, and interpretation[J/OL]. Radiographics, 2023, 43(1): e220088 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/36367822/. DOI: 10.1148/rg.220088.
[64]
THROPP P, PHILLIPS E, JUNG Y, et al. Arterial spin labeling perfusion MRI in the Alzheimer's disease neuroimaging initiative: past, present, and future[J]. Alzheimers Dement, 2024, 20(12): 8937-8952. DOI: 10.1002/alz.14310.
[65]
ZHONG Y L, HU R Y, HUANG X. Aberrant neurovascular coupling in diabetic retinopathy using arterial spin labeling (ASL) and functional magnetic resonance imaging (fMRI) methods[J]. Diabetes Metab Syndr Obes, 2024, 17: 2809-2822. DOI: 10.2147/DMSO.S465103.
[66]
JOSHI D, PRASAD S, SAINI J, et al. Role of arterial spin labeling (ASL) images in Parkinson's disease (PD): a systematic review[J]. Acad Radiol, 2023, 30(8): 1695-1708. DOI: 10.1016/j.acra.2022.11.001.
[67]
SCHRAMM S, BÖRNER C, REICHERT M, et al. Perfusion imaging by arterial spin labeling in migraine: a literature review[J]. J Cereb Blood Flow Metab, 2024, 44(8): 1253-1270. DOI: 10.1177/0271678x241237733.
[68]
ZHOU F Q, HUANG M H, WU L, et al. Altered perfusion of the sensorimotor cortex in patients with cervical spondylotic myelopathy: an arterial spin labeling study[J]. J Pain Res, 2018, 11: 181-190. DOI: 10.2147/JPR.S148076.
[69]
WEI W Z, WANG T, ABULIZI T, et al. Altered coupling between resting-state cerebral blood flow and functional connectivity strength in cervical spondylotic myelopathy patients[J/OL]. Front Neurol, 2021, 12: 713520 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/34566857/. DOI: 10.3389/fneur.2021.713520.
[70]
FEHLINGS M G, TETREAULT L A, RIEW K D, et al. A clinical practice guideline for the management of patients with degenerative cervical myelopathy: recommendations for patients with mild, moderate, and severe disease and nonmyelopathic patients with evidence of cord compression[J]. Global Spine J, 2017, 7(3Suppl): 70S-83S. DOI: 10.1177/2192568217701914.

PREV Research progress of Transformer in MRI image segmentation of brain tumors
NEXT Advances in cardiac magnetic resonance imaging of cardiomyopathy associated with metabolic abnormalities
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn