Share:
Share this content in WeChat
X
Review
Advances in cardiac magnetic resonance imaging of cardiomyopathy associated with metabolic abnormalities
HU Min  LI Bowen  SONG Zhengwu  YUAN Shouhong  SHAO Juwei 

DOI:10.12015/issn.1674-8034.2025.08.029.


[Abstract] The precision non-invasive early diagnosis of metabolic cardiomyopathy remains a significantly challenging, primarily due to its heterogeneous etiologies. Crucially, myocardial injury in these diseases emerges during early metabolic dysregulation, preceding detectable structural or functional abnormalities. Cardiac magnetic resonance (CMR), recognized as the gold standard for assessing cardiac structure and function, leverages its robust multiparametric imaging capabilities. Through integration of multiplanar, multisequence, and multi-axial scanning protocols, CMR not only delivers precise evaluation of cardiac morphology and function but also enables deep tissue characterization, indirectly capturing alterations in myocardial energy metabolism and biomechanical properties. This provides a multidimensional diagnostic framework for early detection of metabolic cardiomyopathy. This article systematically reviews the typical CMR manifestations of various metabolic abnormality-related cardiomyopathies, and points out that CMR has deficiencies such as the lack of standardization in the assessment of metabolic abnormality-related cardiomyopathies and the absence of specific imaging biomarkers that directly reflect myocardial metabolic disorders. Based on the analysis of the advantages and limitations of existing CMR, this article believes that future research should focus on key technological innovations, promoting multimodal image fusion, and establishing a standardized CMR diagnostic system, etc. This article aims to provide new research ideas for the pathogenesis, early diagnosis, subtype differentiation, and prognosis assessment of metabolic abnormality-related cardiomyopathies, and to provide a systematic reference.
[Keywords] cardiac magnetic resonance;diabetic cardiomyopathy;obese cardiomyopathy;iron overload cardiomyopathy;cardiac amyloidosis;fabry disease;Danon disease

HU Min1   LI Bowen2   SONG Zhengwu2   YUAN Shouhong2   SHAO Juwei2*  

1 College of Clinical Medicine, Dali University, Dali 671003, China

2 Department of Radiology, the Affiliated Hospital of Yunnan University, Kunming 650021, China

Corresponding author: SHAO J W, E-mail: wavevivi@163.com

Conflicts of interest   None.

Received  2025-06-02
Accepted  2025-08-05
DOI: 10.12015/issn.1674-8034.2025.08.029
DOI:10.12015/issn.1674-8034.2025.08.029.

[1]
The Cardiomyopathy Specialty Alliance of National Center for Cardiovascular Diseases; Cardiovascular Precision Medicine Branch of China International Exchange, Promotive Association for Medical, CARE H. 2025 Chinese guideline for the management of cardiomyopathies[J]. Chin Circ J, 2025, 40(5): 420-462. DOI: 10.3969/j.issn.1000-3614.2025.05.002.
[2]
ARBELO E, PROTONOTARIOS A, GIMENO J R, et al. 2023 ESC guidelines for the management of cardiomyopathies[J]. Eur Heart J, 2023, 44(37): 3503-3626. DOI: 10.1093/eurheartj/ehad194.
[3]
RITCHIE R H, ABEL E D. Basic mechanisms of diabetic heart disease[J]. Circ Res, 2020, 126(11): 1501-1525. DOI: 10.1161/CIRCRESAHA.120.315913.
[4]
WU Y S, BAO M Y, ZHANG L X, et al. Advances in research on the application of cardiac magnetic resonance imaging in the subclinical stage of diabetic cardiomyopathy[J]. Chin J Magn Reson Imag, 2025, 16(4): 168-173. DOI: 10.12015/issn.1674-8034.2025.04.027.
[5]
ZHUANG B Y, LI S, WANG H, et al. Value of CMR feature-tracking imaging in discriminating subtypes of cardiac amyloidosis[J]. Chin J Magn Reson Imag, 2024, 15(2): 23-29, 62. DOI: 10.12015/issn.1674-8034.2024.02.004.
[6]
LI S, ZHOU D, SIRAJUDDIN A, et al. T1 mapping and extracellular volume fraction in dilated cardiomyopathy: a prognosis study[J]. JACC Cardiovasc Imaging, 2022, 15(4): 578-590. DOI: 10.1016/j.jcmg.2021.07.023.
[7]
AZZU A, ANTONOPOULOS A S, KRUPICKOVA S, et al. Myocardial strain analysis by cardiac magnetic resonance 3D feature-tracking identifies subclinical abnormalities in patients with neuromuscular disease and no overt cardiac involvement[J]. Eur Heart J Cardiovasc Imaging, 2023, 24(4): 503-511. DOI: 10.1093/ehjci/jeac129.
[8]
WANG S, KIM P, WANG H N, et al. Myocardial blood flow quantification using stress cardiac magnetic resonance improves detection of coronary artery disease[J]. JACC Cardiovasc Imaging, 2024, 17(12): 1428-1441. DOI: 10.1016/j.jcmg.2024.07.023.
[9]
YURISTA S R, EDER R A, KWON D H, et al. Magnetic resonance imaging of cardiac metabolism in heart failure: how far have we come?[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(10): 1277-1289. DOI: 10.1093/ehjci/jeac121.
[10]
LARSON P E Z, TANG S Y, LIU X X, et al. Regional quantification of cardiac metabolism with hyperpolarized [1-13C]-pyruvate CMR evaluated in an oral glucose challenge[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 77 [2025-06-01]. https://pubmed.ncbi.nlm.nih.gov/38093285/. DOI: 10.1186/s12968-023-00972-7.
[11]
NIE Z, ZHANG K, CHEN X Y, et al. A multifunctional integrated metal-free MRI agent for early diagnosis of oxidative stress in a mouse model of diabetic cardiomyopathy[J/OL]. Adv Sci (Weinh), 2023, 10(7): e2206171 [2025-06-01]. https://pubmed.ncbi.nlm.nih.gov/36596646/. DOI: 10.1002/advs.202206171.
[12]
YURISTA S R, CHEN S, EDER R A, et al. Mapping the unseen: in vivo CEST-MRI of creatine reveals improved cardiac energetics in subjects with obesity following bariatric surgery[J]. Obes Surg, 2023, 33(6): 1944-1948. DOI: 10.1007/s11695-023-06589-0.
[13]
SHI K, ZHANG G, FU H, et al. Sex differences in clinical profile, left ventricular remodeling and cardiovascular outcomes among diabetic patients with heart failure and reduced ejection fraction: a cardiac-MRI-based study[J/OL]. Cardiovasc Diabetol, 2024, 23(1): 266 [2025-06-01]. https://pubmed.ncbi.nlm.nih.gov/39039567/. DOI: 10.1186/s12933-024-02362-4.
[14]
HSU J C, HUANG K C, LIN T T, et al. Epicardial adipose tissue is associated with geometry alteration and diastolic dysfunction in prediabetic cardiomyopathy[J]. J Clin Endocrinol Metab, 2025, 110(5): 1478-1487. DOI: 10.1210/clinem/dgae400.
[15]
MAREY A, ALABDULLAH A, GHORAB H, et al. Extracellular volume fraction and native T1 mapping in diabetic cardiomyopathy: a comprehensive meta-analysis[J/OL]. BMC Cardiovasc Disord, 2025, 25(1): 70 [2025-06-01]. https://pubmed.ncbi.nlm.nih.gov/39893360/. DOI: 10.1186/s12872-025-04496-z.
[16]
TADIC M, CUSPIDI C, CALICCHIO F, et al. Diabetic cardiomyopathy: How can cardiac magnetic resonance help?[J]. Acta Diabetol, 2020, 57(9): 1027-1034. DOI: 10.1007/s00592-020-01528-2.
[17]
SHU H M, XU H M, PAN Z X, et al. Early detection of myocardial involvement by non-contrast T1ρ mapping of cardiac magnetic resonance in type 2 diabetes mellitus[J/OL]. Front Endocrinol (Lausanne), 2024, 15: 1335899 [2025-06-01]. https://pubmed.ncbi.nlm.nih.gov/38510696/. DOI: 10.3389/fendo.2024.1335899.
[18]
ZHANG G, SHI R, LI X M, et al. Impact of diabetes mellitus on right ventricular dysfunction and ventricular interdependence in hypertensive patients with heart failure with reduced ejection fraction assessed via 3.0 T cardiac MRI[J/OL]. Cardiovasc Diabetol, 2024, 23(1): 375 [2025-06-01]. https://pubmed.ncbi.nlm.nih.gov/39443983/. DOI: 10.1186/s12933-024-02472-z.
[19]
SHI R, JIANG Y N, QIAN W L, et al. Assessment of left atrioventricular coupling and left atrial function impairment in diabetes with and without hypertension using CMR feature tracking[J/OL]. Cardiovasc Diabetol, 2023, 22(1): 295 [2025-06-01]. https://pubmed.ncbi.nlm.nih.gov/37904206/. DOI: 10.1186/s12933-023-01997-z.
[20]
TANG X, SHI R, JIANG L, et al. Additive effect of metabolic dysfunction-associated fatty liver disease on left ventricular function and global strain in type 2 diabetes mellitus patients: a 3.0 T cardiac magnetic resonance feature tracking study[J/OL]. Cardiovasc Diabetol, 2024, 23(1): 317 [2025-06-01]. https://pubmed.ncbi.nlm.nih.gov/39192259/. DOI: 10.1186/s12933-024-02410-z.
[21]
XU J, ZHAO S H, LU M J. Advances of chemical exchange saturation transfer in cardiac MRI[J]. Chin J Med Imag Technol, 2020, 36(2): 291-294. DOI: 10.13929/j.issn.1003-3289.2020.02.030.
[22]
VALKOVIČ L, APPS A, ELLIS J, et al. Increased cardiac Pi/PCr in the diabetic heart observed using phosphorus magnetic resonance spectroscopy at 7T[J/OL]. PLoS One, 2022, 17(6): e0269957 [2025-06-01]. https://pubmed.ncbi.nlm.nih.gov/35709167/. DOI: 10.1371/journal.pone.0269957.
[23]
YANG Y, QIN D L, LI C Y, et al. Prevalence and prognostic significance of reduced myocardial perfusion reserve in diabetic heart failure with preserved ejection fraction using quantitative perfusion cardiac magnetic resonance[J/OL]. Eur Radiol, 2025 [2025-06-01]. https://pubmed.ncbi.nlm.nih.gov/40045071/. DOI: 10.1007/s00330-025-11474-8.
[24]
LI X N, KANG S, LU Z G, et al. Assessment of myocardial microvascular dysfunction in patients with different stages of diabetes mellitus: an adenosine stress perfusion cardiac magnetic resonance study[J/OL]. Eur J Radiol, 2024, 178: 111600 [2025-06-01]. https://pubmed.ncbi.nlm.nih.gov/39029239/. DOI: 10.1016/j.ejrad.2024.111600.
[25]
HENRY J A, ABDESSELAM I, DEAL O, et al. Changes in epicardial and visceral adipose tissue depots following bariatric surgery and their effect on cardiac geometry[J/OL]. Front Endocrinol (Lausanne), 2023, 14: 1092777 [2025-06-01]. https://pubmed.ncbi.nlm.nih.gov/36761185/. DOI: 10.3389/fendo.2023.1092777.
[26]
PU Q, TANG L, PENG P F, et al. Left ventricular structural and functional changes in obese subjects with preserved left ventricular ejection fraction after bariatric surgery: assessment with cardiac magnetic resonance imaging[J]. J Sichuan Univ Med Sci, 2024, 55(6): 1410-1417. DOI: 10.12182/2024116050.
[27]
SHAO J W, CHEN B H, ABU-SHABAN K, et al. Epicardial adipose tissue in obesity with heart failure with preserved ejection fraction: Cardiovascular magnetic resonance biomarker study[J]. World J Cardiol, 2024, 16(3): 149-160. DOI: 10.4330/wjc.v16.i3.149.
[28]
ZHU L, GU S J, WANG Q R, et al. Left ventricular myocardial deformation: a study on diastolic function in the Chinese male population and its relationship with fat distribution[J]. Quant Imaging Med Surg, 2020, 10(3): 634-645. DOI: 10.21037/qims.2020.01.16.
[29]
TANG L, WU X, PENG P F, et al. Value of cardiac magnetic resonance feature tracking in the evaluation of ventricular function in uncomplicated obesity subjects[J]. Chin J Magn Reson Imag, 2023, 14(3): 88-94. DOI: 10.12015/issn.1674-8034.2023.03.015.
[30]
LIU J, LI J, XIA C C, et al. Diastolic dysfunction in adults with uncomplicated obesity evaluated with left atrial and left ventricular tissue tracking and ventricular volume-time curve: a prospective cardiac magnetic resonance study[J]. Quant Imaging Med Surg, 2024, 14(7): 5040-5056. DOI: 10.21037/qims-23-1785.
[31]
ZHAO H, HUANG R, JIANG M, et al. Myocardial tissue-level characteristics of adults with metabolically healthy obesity[J]. JACC Cardiovasc Imaging, 2023, 16(7): 889-901. DOI: 10.1016/j.jcmg.2023.01.022.
[32]
SOGHOMONIAN A, DUTOUR A, KACHENOURA N, et al. Is increased myocardial triglyceride content associated with early changes in left ventricular function? A 1H-MRS and MRI strain study[J/OL]. Front Endocrinol (Lausanne), 2023, 14: 1181452 [2025-06-01]. https://pubmed.ncbi.nlm.nih.gov/37424866/. DOI: 10.3389/fendo.2023.1181452.
[33]
LEWIS A J M, DODD M S, SOURDON J, et al. Hyperpolarized 13C and 31P MRS detects differences in cardiac energetics, metabolism, and function in obesity, and responses following treatment[J/OL]. NMR Biomed, 2024, 37(11): e5206 [2025-06-01]. https://pubmed.ncbi.nlm.nih.gov/38994722/. DOI: 10.1002/nbm.5206.
[34]
ZHOU Y L, LAI Y R, CHEN C. Guidelines for iron chelation therapy in thalassemia in China(2025)[J]. Chin J Contemp Pediatr, 2025, 27(4): 377-388. DOI: 10.7499/j.issn.1008-8830.2411001.
[35]
MELONI A, POSITANO V, PISTOIA L, et al. Left ventricular global function index is associated with myocardial iron overload and heart failure in thalassemia major patients[J]. Int J Cardiovasc Imaging, 2023, 39(5): 991-999. DOI: 10.1007/s10554-023-02792-3.
[36]
SINGH S P, JAGIA P, OJHA V, et al. Diagnostic value of T1 mapping in detecting iron overload in Indian patients with thalassemia major: a comparison with T2* mapping[J]. Indian J Radiol Imaging, 2023, 34(1): 54-59. DOI: 10.1055/s-0043-1772467.
[37]
FADL S A, REVELS J W, REZAI GHARAI L, et al. Cardiac MRI of hereditary cardiomyopathy[J]. Radiographics, 2022, 42(3): 625-643. DOI: 10.1148/rg.210147.
[38]
WU R, WU L M, ZHOU Y, et al. Expert consensus on cardiovascular MR in ischemic cardiomyopathy[J]. Chin J Med Imag Technol, 2024, 40(3): 321-326. DOI: 10.13929/j.issn.1003-3289.2024.03.001.
[39]
MELONI A, PISTOIA L, POSITANO V, et al. Myocardial tissue characterization by segmental T2 mapping in thalassaemia major: detecting inflammation beyond iron[J]. Eur Heart J Cardiovasc Imaging, 2023, 24(9): 1222-1230. DOI: 10.1093/ehjci/jead068.
[40]
ASADIAN S, REZAEIAN N, HOSSEINI L, et al. How does iron deposition modify the myocardium? A feature-tracking cardiac magnetic resonance study[J]. Int J Cardiovasc Imag, 2021, 37(11): 3269-3277. DOI: 10.1007/s10554-021-02305-0.
[41]
SAAD J M, AHMED A I, HAN Y S, et al. Cardiovascular magnetic resonance for suspected cardiac amyloidosis: where are we now?[J]. Heart Fail Rev, 2022, 27(5): 1543-1548. DOI: 10.1007/s10741-022-10226-w.
[42]
BAGGIANO A, BOLDRINI M, MARTINEZ-NAHARRO A, et al. Noncontrast magnetic resonance for the diagnosis of cardiac amyloidosis[J]. JACC Cardiovasc Imaging, 2020, 13(1Pt 1): 69-80. DOI: 10.1016/j.jcmg.2019.03.026.
[43]
DHORE-PATIL A, MODI V, GABR E M, et al. Cardiac magnetic resonance findings in cardiac amyloidosis[J]. Curr Opin Cardiol, 2024, 39(5): 395-406. DOI: 10.1097/HCO.0000000000001166.
[44]
MARTINEZ-NAHARRO A, PATEL R, KOTECHA T, et al. Cardiovascular magnetic resonance in light-chain amyloidosis to guide treatment[J]. Eur Heart J, 2022, 43(45): 4722-4735. DOI: 10.1093/eurheartj/ehac363.
[45]
PAN J A, KERWIN M J, SALERNO M. Native T1 mapping, extracellular volume mapping, and late gadolinium enhancement in cardiac amyloidosis: a meta-analysis[J]. JACC Cardiovasc Imaging, 2020, 13(6): 1299-1310. DOI: 10.1016/j.jcmg.2020.03.010.
[46]
TANG L T, ZHAO W J, LI K, et al. Assessing microvascular dysfunction and predicting long-term prognosis in patients with cardiac amyloidosis by cardiovascular magnetic resonance quantitative stress perfusion[J/OL]. J Cardiovasc Magn Reson, 2025, 27(1): 101134 [2025-06-01]. https://pubmed.ncbi.nlm.nih.gov/39675481/. DOI: 10.1016/j.jocmr.2024.101134.
[47]
GRAZZINI G, PRADELLA S, BANI R, et al. The role of T2 mapping in cardiac amyloidosis[J/OL]. Diagnostics (Basel), 2024, 14(10): 1048 [2025-06-01]. https://pubmed.ncbi.nlm.nih.gov/38786346/. DOI: 10.3390/diagnostics14101048.
[48]
LI X, LI J, LIN L, et al. Left and right ventricular myocardial deformation and late gadolinium enhancement: incremental prognostic value in amyloid light-chain amyloidosis[J]. Cardiovasc Diagn Ther, 2020, 10(3): 470-480. DOI: 10.21037/cdt-20-181.
[49]
TAN Z K, YANG Y L, WU X Y, et al. Left atrial remodeling and the prognostic value of feature tracking derived left atrial strain in patients with light-chain amyloidosis: a cardiovascular magnetic resonance study[J]. Int J Cardiovasc Imaging, 2022, 38(7): 1519-1532. DOI: 10.1007/s10554-022-02534-x.
[50]
CLERC O F, CUDDY S A M, JEROSCH-HEROLD M, et al. Myocardial characteristics, cardiac structure, and cardiac function in systemic light-chain amyloidosis[J]. JACC Cardiovasc Imaging, 2024, 17(11): 1271-1286. DOI: 10.1016/j.jcmg.2024.05.004.
[51]
ZHANG S Y, HAN Y L, TIAN Z, et al. Chinese expert consensus on the diagnosis and treatment of adult fabry disease cardiomyopathy[J]. J Rare Dis, 2024, 3(3): 335-344. DOI: 10.3760/cma.j.cn112148-20231008-00263.
[52]
CAMELI M, PIERONI M, PASTORE M C, et al. The role of cardiovascular multimodality imaging in the evaluation of Anderson-Fabry disease: from early diagnosis to therapy monitoring[J]. Eur Heart J Cardiovasc Imaging, 2025, 26(5): 814-829. DOI: 10.1093/ehjci/jeaf038.
[53]
LI J L, PU L T, XU Z Q, et al. Screening for Fabry disease in patients with hypertrophic cardiomyopathy using cardiac magnetic resonance imaging[J]. Eur Radiol, 2025, 35(5): 2888-2898. DOI: 10.1007/s00330-024-11203-7.
[54]
AQUARO G D, DE GORI C, FAGGIONI L, et al. Cardiac magnetic resonance in fabry disease: morphological, functional, and tissue features[J/OL]. Diagnostics (Basel), 2022, 12(11): 2652 [2025-06-01]. https://pubmed.ncbi.nlm.nih.gov/36359495/. DOI: 10.3390/diagnostics12112652.
[55]
NOJIRI A, ANAN I, MORIMOTO S, et al. Clinical findings of gadolinium-enhanced cardiac magnetic resonance in Fabry patients[J]. J Cardiol, 2020, 75(1): 27-33. DOI: 10.1016/j.jjcc.2019.09.002.
[56]
WANG S C, TAPIA D, KIMONIS V E, et al. Regional strain pattern and correlation with cardiac magnetic resonance imaging in fabry disease[J]. J Cardiovasc Echogr, 2021, 31(3): 131-136. DOI: 10.4103/jcecho.jcecho_119_20.
[57]
WEI X Y, ZHAO L, XIE J J, et al. Cardiac phenotype characterization at MRI in patients with danon disease: a retrospective multicenter case series[J]. Radiology, 2021, 299(2): 303-310. DOI: 10.1148/radiol.2021203996.
[58]
LOTAN D, SALAZAR-MENDIGUCHÍA J, MOGENSEN J, et al. Clinical profile of cardiac involvement in danon disease: a multicenter European registry[J/OL]. Circ Genom Precis Med, 2020, 13(6): e003117 [2025-06-01]. https://pubmed.ncbi.nlm.nih.gov/33151750/. DOI: 10.1161/CIRCGEN.120.003117.
[59]
HONG K N, ESHRAGHIAN E, KHEDRO T, et al. An international longitudinal natural history study of patients with danon disease: unique cardiac trajectories identified based on sex and heart failure outcomes[J/OL]. J Am Heart Assoc, 2025, 14(7): e038394 [2025-06-01]. https://pubmed.ncbi.nlm.nih.gov/40118805/. DOI: 10.1161/JAHA.124.038394.
[60]
HE J, XU J, CHEN L, et al. Clinical features and cardiovascular magnetic resonance characteristics in Danon disease[J/OL]. Clin Radiol, 2020, 75(9): 712.e1-712712.e11 [2025-06-01]. https://pubmed.ncbi.nlm.nih.gov/32499120/. DOI: 10.1016/j.crad.2020.04.012.
[61]
RIGOLLI M, KAHN A M, BRAMBATTI M, et al. Cardiac magnetic resonance imaging in danon disease cardiomyopathy[J]. JACC Cardiovasc Imaging, 2021, 14(2): 514-516. DOI: 10.1016/j.jcmg.2020.08.011.

PREV Progress in MRI on brain imaging of patients with cervical spondylotic myelopathy
NEXT Clinical application advances of cardiac magnetic resonance in assessing right atrial function
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn