Share:
Share this content in WeChat
X
Review
Research progress of diffusion-weighted magnetic resonance imaging technology in the diagnosis and treatment of lung cancer
DONG Ziyan  LI Yuxuan  SHI Xinying  ZHENG Wenjing  LIU Xiaoqin  LUO Xin  CAO Jinfeng 

DOI:10.12015/issn.1674-8034.2025.08.032.


[Abstract] As one of the most threatening malignant tumors in the world, lung cancer has a very high incidence rate and mortality, and poses a serious threat to human health. Its early diagnosis and treatment can help improve the survival rate of patients. Traditional chest computed tomography (CT) is still the main imaging examination method for lung cancer diagnosis, but CT scanning has certain radiation and can only provide morphological features of the tumor. With the continuous development of magnetic resonance imaging (MRI) technology, diffusion-weighted magnetic resonance imaging technology has gradually been applied to lung cancer. It can not only provide morphological features of tumors but also functional features, greatly improving the diagnostic performance of lung cancer. This article will review various magnetic resonance diffusion-weighted imaging techniques in the differential diagnosis, pathological classification, gene mutation prediction, and treatment efficacy evaluation of lung cancer, and summarize the limitations of current research and point out future research directions,in order to provide new ideas for the diagnosis and treatment of lung cancer in the future, and promote the development of diffusion-weighted imaging technology in the diagnosis and treatment of lung cancer.
[Keywords] lung cancer;diffusion-weighted magnetic resonance imaging technology;differential diagnosis;pathological typing;treatment efficacy

DONG Ziyan1, 2   LI Yuxuan1, 2   SHI Xinying2, 3   ZHENG Wenjing2, 3   LIU Xiaoqin2, 3   LUO Xin2   CAO Jinfeng2*  

1 School of Medical Imaging, Shandong Second Medical University, Weifang 261053, China

2 Department of Radiology, Zibo Central Hospital, Zibo 255000, China

3 School of Medical Imaging, Binzhou Medical University, Yantai 264003, China

Corresponding author: CAO J F, E-mail: cjf19810629@163.com

Conflicts of interest   None.

Received  2025-05-14
Accepted  2025-08-08
DOI: 10.12015/issn.1674-8034.2025.08.032
DOI:10.12015/issn.1674-8034.2025.08.032.

[1]
OWENS C, HINDOCHA S, LEE R, et al. The lung cancers: staging and response, CT, 18F-FDG PET/CT, MRI, DWI: review and new perspectives[J/OL]. Br J Radiol, 2023, 96(1148): 20220339 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/37097296/. DOI: 10.1259/bjr.20220339.
[2]
PEETERS S, LAU K, STEFANIDIS K, et al. New diagnostic and nonsurgical local treatment modalities for early stage lung cancer[J/OL]. Lung Cancer, 2024, 196: 107952 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/39236577/. DOI: 10.1016/j.lungcan.2024.107952.
[3]
JAGODA P, FLECKENSTEIN J, SONNHOFF M, et al. Diffusion-weighted MRI improves response assessment after definitive radiotherapy in patients with NSCLC[J/OL]. Cancer Imaging, 2021, 21(1): 15 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/33478592/. DOI: 10.1186/s40644-021-00384-9.
[4]
ALORFI F, BOMANJI J, BERTOLETTI L, et al. PET/MRI in non-small cell lung cancer (NSCLC)[J]. Semin Nucl Med, 2025, 55(2): 234-239. DOI: 10.1053/j.semnuclmed.2025.02.009.
[5]
YIN M, QIN W H, SUN Z G. Research progress of MRI radiomics in lung cancer[J]. Chin J Magn Reson Imag, 2023, 14(6): 129-132, 150. DOI: 10.12015/issn.1674-8034.2023.06.023.
[6]
ZHENG Y, ZHOU L, HUANG W J, et al. Histogram analysis of multiple diffusion models for predicting advanced non-small cell lung cancer response to chemoimmunotherapy[J/OL]. Cancer Imaging, 2024, 24(1): 71 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/38863062/. DOI: 10.1186/s40644-024-00713-8.
[7]
KIM Y, LEE S K, KIM J Y, et al. Pitfalls of diffusion-weighted imaging: clinical utility of T2 shine-through and T2 black-out for musculoskeletal diseases[J/OL]. Diagnostics (Basel), 2023, 13(9): 1647 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/37175036/. DOI: 10.3390/diagnostics13091647.
[8]
WANG Q R, WANG D Y, ZHAO S, et al. Application of diffusion-weighted magnetic resonance imaging with different b-values in the puncture of lung space-occupying lesions[J]. Chin J Magn Reson Imag, 2021, 12(8): 75-78. DOI: 10.12015/issn.1674-8034.2021.08.015.
[9]
XIANG L, QIN Y, YANG H, et al. Differential value of IVIM-DWI whole-lesion histogram parameters for benign and malignant solitary pulmonary nodules[J]. Radiol Pract, 2023, 38(12): 1539-1547. DOI: 10.13609/j.cnki.1000-0313.2023.12.008.
[10]
JIANG J Q, FU Y G, ZHANG L L, et al. Volumetric analysis of intravoxel incoherent motion diffusion-weighted imaging in preoperative assessment of non-small cell lung cancer[J]. Jpn J Radiol, 2022, 40(9): 903-913. DOI: 10.1007/s11604-022-01279-w.
[11]
JENSEN J H, HELPERN J A, RAMANI A, et al. Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med, 2005, 53(6): 1432-1440. DOI: 10.1002/mrm.20508.
[12]
XIE X Y, FENG M, RONG Y, et al. Whole brain atlas-based diffusion kurtosis imaging parameters for the evaluation of multiple cognitive-related brain microstructure injuries after radiotherapy in lung cancer patients with brain metastasis[J]. Quant Imaging Med Surg, 2023, 13(8): 5321-5332. DOI: 10.21037/qims-22-1376.
[13]
XIE L, YU F F, WANG Y B, et al. The application value of diffusion kurtosis imaging in pathological type and grade of lung cancer[J]. J Clin Radiol, 2020, 39(12): 2430-2434. DOI: 10.13437/j.cnki.jcr.2020.12.017.
[14]
GUAN Z Z, LU X H, ZHANG D X. Research progress of new MRI technologies in the examination of traumatic spinal cord injury[J]. Chin J Spine Spinal Cord, 2024, 34(8): 885-888. DOI: 10.3969/j.issn.1004-406X.2024.08.14.
[15]
MARTUCCI M, RUSSO R, SCHIMPERNA F, et al. Magnetic resonance imaging of primary adult brain tumors: state of the art and future perspectives[J/OL]. Biomedicines, 2023, 11(2): 364 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/36830900/. DOI: 10.3390/biomedicines11020364.
[16]
CUI Y Y, WANG X H, WANG Y, et al. Restriction spectrum imaging and diffusion kurtosis imaging for assessing proliferation status in rectal carcinoma[J]. Acad Radiol, 2025, 32(1): 201-209. DOI: 10.1016/j.acra.2024.08.021.
[17]
CHEN J J, SUN W, WANG W T, et al. Diffusion-based virtual MR elastography for predicting recurrence of solitary hepatocellular carcinoma after hepatectomy[J/OL]. Cancer Imaging, 2024, 24(1): 106 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/39138500/. DOI: 10.1186/s40644-024-00759-8.
[18]
WANG K, WU G Y. Monoexponential, biexponential, stretched exponential and diffusion kurtosis models of diffusion-weighted imaging: a quantitative differentiation of solitary pulmonary lesion[J/OL]. BMC Med Imaging, 2024, 24(1): 346 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/39707237/. DOI: 10.1186/s12880-024-01537-5.
[19]
LIU J Q, XIA X Y, ZOU Q, et al. Diagnostic performance of diffusion-weighted imaging versus 18F-FDG PET/CT in differentiating pulmonary lesions: an updated meta-analysis of comparative studies[J/OL]. BMC Med Imaging, 2023, 23(1): 37 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/36899303/. DOI: 10.1186/s12880-023-00990-y.
[20]
CHANG N, WANG X H, CUI L B, et al. Diagnostic performance of diffusion-weighted magnetic resonance imaging in pulmonary malignant lesions: a meta-analysis[J]. Transl Lung Cancer Res, 2019, 8(6): 738-747. DOI: 10.21037/tlcr.2019.10.08.
[21]
SHEN G H, JIA Z Y, DENG H F. Apparent diffusion coefficient values of diffusion-weighted imaging for distinguishing focal pulmonary lesions and characterizing the subtype of lung cancer: a meta-analysis[J]. Eur Radiol, 2016, 26(2): 556-566. DOI: 10.1007/s00330-015-3840-y.
[22]
XIE K X, CUI C, LI X Q, et al. MRI-based clinical-imaging-radiomics nomogram model for discriminating between benign and malignant solid pulmonary nodules or masses[J]. Acad Radiol, 2024, 31(10): 4231-4241. DOI: 10.1016/j.acra.2024.03.042.
[23]
LI J X, WU B L, HUANG Z, et al. Whole-lesion histogram analysis of multiple diffusion metrics for differentiating lung cancer from inflammatory lesions[J/OL]. Front Oncol, 2023, 12: 1082454 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/36741699/. DOI: 10.3389/fonc.2022.1082454.
[24]
ZHU Q, REN C, XU J J, et al. Whole-lesion histogram analysis of mono-exponential and bi-exponential diffusion-weighted imaging in differentiating lung cancer from benign pulmonary lesions using 3 T MRI[J]. Clin Radiol, 2021, 76(11): 846-853. DOI: 10.1016/j.crad.2021.07.003.
[25]
DENG Y, LI X C, LEI Y X, et al. Use of diffusion-weighted magnetic resonance imaging to distinguish between lung cancer and focal inflammatory lesions: a comparison of intravoxel incoherent motion derived parameters and apparent diffusion coefficient[J]. Acta Radiol, 2016, 57(11): 1310-1317. DOI: 10.1177/0284185115586091.
[26]
DAS S K, YANG D J, WANG J L, et al. Non-Gaussian diffusion imaging for malignant and benign pulmonary nodule differentiation: a preliminary study[J]. Acta Radiol, 2017, 58(1): 19-26. DOI: 10.1177/0284185116639763.
[27]
WAN Q, DENG Y S, LEI Q, et al. Differentiating between malignant and benign solid solitary pulmonary lesions: are intravoxel incoherent motion and diffusion kurtosis imaging superior to conventional diffusion-weighted imaging?[J]. Eur Radiol, 2019, 29(3): 1607-1615. DOI: 10.1007/s00330-018-5714-6.
[28]
ZHENG Y, LI J, CHEN K, et al. Comparison of conventional DWI, intravoxel incoherent motion imaging, and diffusion kurtosis imaging in differentiating lung lesions[J/OL]. Front Oncol, 2022, 11: 815967 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/35127530/. DOI: 10.3389/fonc.2021.815967.
[29]
XIANG L, YANG H, QIN Y, et al. Differential value of diffusion kurtosis imaging and intravoxel incoherent motion in benign and malignant solitary pulmonary lesions[J/OL]. Front Oncol, 2023, 12: 1075072 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/36713551/. DOI: 10.3389/fonc.2022.1075072.
[30]
LIU X, MENG N, ZHOU Y H, et al. Tri-compartmental restriction spectrum imaging based on 18F-FDG PET/MR for identification of primary benign and malignant lung lesions[J]. J Magn Reson Imaging, 2025, 61(2): 830-840. DOI: 10.1002/jmri.29438.
[31]
ZHANG S, DU Y H, LIANG T, et al. Diagnostic efficiency of intravoxel incoherent motion-based virtual magnetic resonance elastography in pulmonary neoplasms[J/OL]. Cancer Imaging, 2024, 24(1): 88 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/38971790/. DOI: 10.1186/s40644-024-00728-1.
[32]
HAN H Z, GUO W X, REN H, et al. Predictors of lung cancer subtypes and lymph node status in non-small-cell lung cancer: intravoxel incoherent motion parameters and extracellular volume fraction[J/OL]. Insights Imaging, 2024, 15(1): 168 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/38971908/. DOI: 10.1186/s13244-024-01758-w.
[33]
DANG S, GUO Y, HAN D, et al. MRI-based radiomics analysis in differentiating solid non-small-cell from small-cell lung carcinoma: a pilot study[J/OL]. Clin Radiol, 2022, 77(10): e749-e757 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/35817610/. DOI: 10.1016/j.crad.2022.06.006.
[34]
LI G Z, HUANG R J, ZHU M, et al. Native T1-mapping and diffusion-weighted imaging (DWI) can be used to identify lung cancer pathological types and their correlation with Ki-67 expression[J]. J Thorac Dis, 2022, 14(2): 443-454. DOI: 10.21037/jtd-22-77.
[35]
ZHENG Y, HUANG W J, ZHANG X L, et al. A noninvasive assessment of tumor proliferation in lung cancer patients using intravoxel incoherent motion magnetic resonance imaging[J]. J Cancer, 2021, 12(1): 190-197. DOI: 10.7150/jca.48589.
[36]
BILGIN S S, GULTEKIN M A, YURTSEVER I, et al. Diffusion tensor imaging can discriminate the primary cell type of intracranial metastases for patients with lung cancer[J]. Magn Reson Med Sci, 2022, 21(3): 425-431. DOI: 10.2463/mrms.mp.2020-0183.
[37]
FENG P Y, SHAO Z H, DONG B, et al. Application of diffusion kurtosis imaging and 18F-FDG PET in evaluating the subtype, stage and proliferation status of non-small cell lung cancer[J/OL]. Front Oncol, 2022, 12: 989131 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/36248958/. DOI: 10.3389/fonc.2022.989131.
[38]
WANG K, WU G. Whole-volume diffusion kurtosis magnetic resonance (MR) imaging histogram analysis of non-small cell lung cancer: correlation with histopathology and degree of tumor differentiation[J/OL]. Clin Radiol, 2024, 79(8): e1072-e1080 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/38816262/. DOI: 10.1016/j.crad.2024.04.018.
[39]
TANG X, BAI G Y, WANG H, et al. Elaboration of multiparametric MRI-based radiomics signature for the preoperative quantitative identification of the histological grade in patients with non-small-cell lung cancer[J]. J Magn Reson Imaging, 2022, 56(2): 579-589. DOI: 10.1002/jmri.28051.
[40]
XIANG Y C, LIU X D, WANG Y F, et al. Mechanisms of resistance to targeted therapy and immunotherapy in non-small cell lung cancer: promising strategies to overcoming challenges[J/OL]. Front Immunol, 2024, 15: 1366260 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/38655260/. DOI: 10.3389/fimmu.2024.1366260.
[41]
YUAN M, PU X H, XU X Q, et al. Lung adenocarcinoma: Assessment of epidermal growth factor receptor mutation status based on extended models of diffusion-weighted image[J]. J Magn Reson Imaging, 2017, 46(1): 281-289. DOI: 10.1002/jmri.25572.
[42]
GULTEKIN M A, TURK H M, YURTSEVER I, et al. The utility and efficiency of diffusion tensor imaging values to determine epidermal growth factor receptor gene mutation status in brain metastasis from lung adenocarcinoma; a preliminary study[J]. Curr Med Imaging, 2020, 16(10): 1271-1277. DOI: 10.2174/1573405615666191122122207.
[43]
LV X N, LI Y, WANG B, et al. Multisequence MRI-based radiomics signature as potential biomarkers for differentiating KRAS mutations in non-small cell lung cancer with brain metastases[J/OL]. Eur J Radiol Open, 2024, 12: 100548 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/38298532/. DOI: 10.1016/j.ejro.2024.100548.
[44]
KARAYAMA M, YOSHIZAWA N, SUGIYAMA M, et al. Intravoxel incoherent motion magnetic resonance imaging for predicting the long-term efficacy of immune checkpoint inhibitors in patients with non-small-cell lung cancer[J/OL]. Lung Cancer, 2020, 143: 47-54 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/32203770/. DOI: 10.1016/j.lungcan.2020.03.013.
[45]
JIANG H, LI Z Q, MENG N, et al. Predictive value of metabolic parameters and apparent diffusion coefficient derived from 18F-FDG PET/MR in patients with non-small cell lung cancer[J/OL]. BMC Med Imaging, 2024, 24(1): 290 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/39472782/. DOI: 10.1186/s12880-024-01445-8.
[46]
GRUNDBERG O, SKRIBEK M, SWERKERSSON S, et al. Diffusion weighted MRI and apparent diffusion coefficient as a prognostic biomarker in evaluating chemotherapy-antiangiogenic treated stage IV non-small cell lung cancer: a prospective, single-arm, open-label, clinical trial (BevMar)[J/OL]. Eur J Radiol, 2024, 177: 111557 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/38954912/. DOI: 10.1016/j.ejrad.2024.111557.
[47]
VOGL T J, EMARA E H, ELHAWASH E, et al. Feasibility of diffusion-weighted magnetic resonance imaging in evaluation of early therapeutic response after CT-guided microwave ablation of inoperable lung neoplasms[J]. Eur Radiol, 2022, 32(5): 3288-3296. DOI: 10.1007/s00330-021-08387-7.
[48]
LIU S Q, LV Y, DUAN L W, et al. Development and validation of multi-sequence magnetic resonance imaging radiomics models for predicting tumor response to radiotherapy in locally advanced non-small cell lung cancer[J]. J Thorac Dis, 2025, 17(3): 1684-1697. DOI: 10.21037/jtd-2025-142.
[49]
BAO X, BIAN D L, YANG X, et al. Multiparametric MRI for evaluation of pathological response to the neoadjuvant chemo-immunotherapy in resectable non-small-cell lung cancer[J]. Eur Radiol, 2023, 33(12): 9182-9193. DOI: 10.1007/s00330-023-09813-8.
[50]
QIN Y J, TANG C L, HU Q L, et al. Quantitative assessment of restriction spectrum MR imaging for the diagnosis of breast cancer and association with prognostic factors[J]. J Magn Reson Imaging, 2023, 57(6): 1832-1841. DOI: 10.1002/jmri.28468.

PREV Research progress on predicting the prognosis of nasopharyngeal carcinoma based on magnetic resonance imaging features
NEXT Research progress on multimodal MRI and radiomics for assessing tumor budding in rectal cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn