Share:
Share this content in WeChat
X
[Chinese] [PDF] 185 11
Review
Clinical application progress of artificial intelligence-assisted compressed sensing technology in MRI
LI Tao  YIN Shuo  ZHANG Xuanxiao  ZHANG Huimao  ZHOU Hongwei 

DOI:10.12015/issn.1674-8034.2025.08.034.


[Abstract] Prolonged scan times remain a major bottleneck for the clinical utility of magnetic resonance imaging (MRI). While conventional compressed sensing techniques accelerate acquisition, they often introduce artifacts and exhibit limited efficacy in reconstructing complex anatomical structures at high acceleration factors.Artificial intelligence-assisted compressed sensing (ACS) addresses these limitations by integrating deep learning (DL) architectures—such as convolutional neural networks (CNNs) and generative adversarial networks (GANs)—with compressed sensing principles within end-to-end frameworks. This synergy enables substantial acceleration (>2×) while preserving diagnostic features. However, ACS faces critical challenges: lack of standardized acceleration factors, insufficient algorithm generalizability across diverse anatomies and pathological heterogeneity, and inadequate validation of diagnostic efficacy for subtle lesions (e.g., small metastatic lymph nodes). Furthermore, existing reviews predominantly focus on single-system applications or purely technical aspects, lacking a systematic evaluation of ACS's clinical utility across multiple body regions.This review systematically synthesizes technological advancements and MRI clinical progress in ACS, critically evaluating its strengths, limitations, and unresolved challenges in multi-system imaging (head-neck, musculoskeletal, cardiothoracic, abdominal, pelvic). We aim to provide evidence-based guidance for optimizing clinical implementation of ACS and direct future research toward advancing precision, efficiency, and intelligence in MRI.
[Keywords] artificial intelligence;compressed sensing;magnetic resonance imaging;cerebrovascular diseases;bone and joint diseases;coronary artery diseases;abdominal diseases;uterine-related disorders

LI Tao   YIN Shuo   ZHANG Xuanxiao   ZHANG Huimao   ZHOU Hongwei*  

Department of Radiology, the First Hospital of Jilin University, Changchun 130021, China

Corresponding author: ZHOU H W, E-mail: hwzhou@jlu.edu.cn

Conflicts of interest   None.

Received  2025-06-06
Accepted  2025-08-05
DOI: 10.12015/issn.1674-8034.2025.08.034
DOI:10.12015/issn.1674-8034.2025.08.034.

[1]
SAUER S T, CHRISTNER S A, LOIS A M, et al. Deep learning k-space-to-image reconstruction facilitates high spatial resolution and scan time reduction in diffusion-weighted imaging breast MRI[J]. J Magn Reson Imag, 2024, 60(3): 1190-1200. DOI: 10.1002/jmri.29139.
[2]
TSAO J, KOZERKE S. MRI temporal acceleration techniques[J]. J Magn Reson Imaging, 2012, 36(3): 543-560. DOI: 10.1002/jmri.23640.
[3]
FENG L, BENKERT T, BLOCK K T, et al. Compressed sensing for body MRI[J]. J Magn Reson Imaging, 2017, 45(4): 966-987. DOI: 10.1002/jmri.25547.
[4]
STARCK J L, ELAD M, DONOHO D L. Image decomposition via the combination of sparse representations and a variational approach[J]. IEEE Trans Image Process, 2005, 14(10): 1570-1582. DOI: 10.1109/tip.2005.852206.
[5]
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. DOI: 10.1038/nature14539.
[6]
YAN J P, CHEN S, ZHANG Y B, et al. Neural Architecture Search for compressed sensing Magnetic Resonance image reconstruction[J/OL]. Comput Med Imaging Graph, 2020, 85: 101784 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/32860972/. DOI: 10.1016/j.compmedimag.2020.101784.
[7]
KRAVETS V, STERN A. Progressive compressive sensing of large images with multiscale deep learning reconstruction[J/OL]. Sci Rep, 2022, 12(1): 7228 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/35508516/. DOI: 10.1038/s41598-022-11401-7.
[8]
CHEN B, ZHANG J. Content-aware scalable deep compressed sensing[J/OL]. IEEE Trans Image Process, 2022, 31: 5412-5426 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/35947572/. DOI: 10.1109/TIP.2022.3195319.
[9]
GAO W, GUO Y, MA S W, et al. Efficient neural network compression inspired by compressive sensing[J]. IEEE Trans Neural Netw Learn Syst, 2024, 35(2): 1965-1979. DOI: 10.1109/TNNLS.2022.3186008.
[10]
DING J L, CHAI L, DUAN Y Y, et al. Accelerating brain three-dimensional T2 fluid-attenuated inversion recovery using artificial intelligence-assisted compressed sensing: a comparison study with parallel imaging[J]. Quant Imaging Med Surg, 2024, 14(10): 7237-7248. DOI: 10.21037/qims-24-722.
[11]
ZHANG Y, PENG W L, XIAO Y, et al. Rapid 3D breath-hold MR cholangiopancreatography using deep learning-constrained compressed sensing reconstruction[J]. Eur Radiol, 2023, 33(4): 2500-2509. DOI: 10.1007/s00330-022-09227-y.
[12]
DUAN T, ZHANG Z, CHEN Y D, et al. Deep learning-based compressed SENSE improved diffusion-weighted image quality and liver cancer detection: a prospective study[J/OL]. Magn Reson Imaging, 2024, 111: 74-83 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/38604347/. DOI: 10.1016/j.mri.2024.04.010.
[13]
SHIRAISHI K, NAKAURA T, UETANI H, et al. Combination use of compressed sensing and deep learning for shoulder magnetic resonance imaging with various sequences[J]. J Comput Assist Tomogr, 2023, 47(2): 277-283. DOI: 10.1097/RCT.0000000000001418.
[14]
BISCHOFF L M, KATEMANN C, ISAAK A, et al. T2 turbo spin echo with compressed sensing and propeller acquisition (sampling k-space by utilizing rotating blades) for fast and motion robust prostate MRI: comparison with conventional acquisition[J]. Invest Radiol, 2023, 58(3): 209-215. DOI: 10.1097/RLI.0000000000000923.
[15]
XU G X, LIU H B, WU S Y, et al. MRI for rectal cancer: a controlled study of AI-assisted compression sensing technique and parallel imaging technique[J]. Radiol Pract, 2023, 38(4): 446-451. DOI: 10.13609/j.cnki.1000-0313.2023.04.013.
[16]
DU-HARPUR X, WATT F M, LUSCOMBE N M, et al. What is AI? Applications of artificial intelligence to dermatology[J]. Br J Dermatol, 2020, 183(3): 423-430. DOI: 10.1111/bjd.18880.
[17]
MUSIB M, WANG F, TARSELLI M A, et al. Artificial intelligence in research[J]. Science, 2017, 357(6346): 28-30. DOI: 10.1126/science.357.6346.28.
[18]
DERRY A, KRZYWINSKI M, ALTMAN N. Convolutional neural networks[J]. Nat Methods, 2023, 20(9): 1269-1270. DOI: 10.1038/s41592-023-01973-1.
[19]
ZHANG Z, LI H, KE C, et al. Deep variational network for blind pansharpening[J]. IEEE Trans Neural Netw Learn Syst, 2025, 36(5): 9283-9297. DOI: 10.1109/tnnls.2024.3436850.
[20]
YUE Z S, YONG H W, ZHAO Q, et al. Deep variational network toward blind image restoration[J]. IEEE Trans Pattern Anal Mach Intell, 2024, 46(11): 7011-7026. DOI: 10.1109/TPAMI.2024.3365745.
[21]
LI C X, XU K, ZHU J, et al. Triple generative adversarial networks[J]. IEEE Trans Pattern Anal Mach Intell, 2022, 44(12): 9629-9640. DOI: 10.1109/TPAMI.2021.3127558.
[22]
LIU J, LI W, LI Z Y, et al. Magnetic resonance shoulder imaging using deep learning-based algorithm[J]. Eur Radiol, 2023, 33(7): 4864-4874. DOI: 10.1007/s00330-023-09470-x.
[23]
CALIVÀ F, NAMIRI N K, DUBREUIL M, et al. Studying osteoarthritis with artificial intelligence applied to magnetic resonance imaging[J]. Nat Rev Rheumatol, 2022, 18(2): 112-121. DOI: 10.1038/s41584-021-00719-7.
[24]
HOSNY A, PARMAR C, QUACKENBUSH J, et al. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018, 18(8): 500-510. DOI: 10.1038/s41568-018-0016-5.
[25]
INFANTE T, CAVALIERE C, PUNZO B, et al. Radiogenomics and artificial intelligence approaches applied to cardiac computed tomography angiography and cardiac magnetic resonance for precision medicine in coronary heart disease: a systematic review[J]. Circ Cardiovasc Imaging, 2021, 14(12): 1133-1146. DOI: 10.1161/CIRCIMAGING.121.013025.
[26]
CHEN X X, WANG X M, ZHANG K, et al. Recent advances and clinical applications of deep learning in medical image analysis[J/OL]. Med Image Anal, 2022, 79: 102444 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/35472844/. DOI: 10.1016/j.media.2022.102444.
[27]
DONOHO D L. Compressed sensing[J]. IEEE Trans Inf Theory, 2006, 52(4): 1289-1306. DOI: 10.1109/TIT.2006.871582.
[28]
LUSTIG M, DONOHO D, PAULY J M. Sparse MRI: The application of compressed sensing for rapid MR imaging[J]. Magn Reson Med, 2007, 58(6): 1182-1195. DOI: 10.1002/mrm.21391.
[29]
MONAJEMI H, JAFARPOUR S, GAVISH M, et al. Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices[J]. Proc Natl Acad Sci USA, 2013, 110(4): 1181-1186. DOI: 10.1073/pnas.1219540110.
[30]
RONTANI D, CHOI D, CHANG C Y, et al. Compressive sensing with optical chaos[J/OL]. Sci Rep, 2016, 6: 35206 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/27910863/. DOI: 10.1038/srep35206.
[31]
SONG CHO D M, YANG H Q, JIA Z Z, et al. Predictive coding compressive sensing optical coherence tomography hardware implementation[J]. Biomed Opt Express, 2024, 15(11): 6606-6618. DOI: 10.1364/BOE.541685.
[32]
EICHINGER P, HOCK A, SCHÖN S, et al. Acceleration of double inversion recovery sequences in multiple sclerosis with compressed sensing[J]. Invest Radiol, 2019, 54(6): 319-324. DOI: 10.1097/RLI.0000000000000550.
[33]
ZHANG Y, ZHANG X N, JIANG Y Q, et al. 3D whole-heart noncontrast coronary MR angiography based on compressed SENSE technology: a comparative study of conventional SENSE sequence and coronary computed tomography angiography[J/OL]. Insights Imaging, 2023, 14(1): 35 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/36790611/. DOI: 10.1186/s13244-023-01378-w.
[34]
ONISHI N, KATAOKA M, KANAO S, et al. Ultrafast dynamic contrast-enhanced MRI of the breast using compressed sensing: breast cancer diagnosis based on separate visualization of breast arteries and veins[J]. J Magn Reson Imaging, 2018, 47(1): 97-104. DOI: 10.1002/jmri.25747.
[35]
LEE H K, SONG J S, JANG W, et al. Improved single breath-hold SSFSE sequence for liver MRI based on compressed sensing: evaluation of image quality compared with conventional T2-weighted sequences[J/OL]. Diagnostics (Basel), 2022, 12(9): 2164 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/36140565/. DOI: 10.3390/diagnostics12092164.
[36]
SUN W, WANG W T, ZHU K, et al. Feasibility of compressed sensing technique for isotropic dynamic contrast-enhanced liver magnetic resonance imaging[J/OL]. Eur J Radiol, 2021, 139: 109729 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/33905976/. DOI: 10.1016/j.ejrad.2021.109729.
[37]
TERADA Y, TAMADA D, KOSE K, et al. Acceleration of skeletal age MR examination using compressed sensing[J]. J Magn Reson Imaging, 2016, 44(1): 204-211. DOI: 10.1002/jmri.25140.
[38]
GAO Z F, GUO Y F, ZHANG J J, et al. Hierarchical perception adversarial learning framework for compressed sensing MRI[J]. IEEE Trans Med Imaging, 2023, 42(6): 1859-1874. DOI: 10.1109/TMI.2023.3240862.
[39]
WANG H K, LI Z A, HOU X S. Versatile denoising-based approximate message passing for compressive sensing[J/OL]. IEEE Trans Image Process, 2023, 32: 2761-2775 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/37186530/. DOI: 10.1109/TIP.2023.3274967.
[40]
FUJIMA N, NAKAGAWA J, IKEBE Y, et al. Improved image quality in contrast-enhanced 3D-T1 weighted sequence by compressed sensing-based deep-learning reconstruction for the evaluation of head and neck[J/OL]. Magn Reson Imaging, 2024, 108: 111-115 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/38340971/. DOI: 10.1016/j.mri.2024.02.006.
[41]
DAI Y X, WANG C Y, WANG H. Deep compressed sensing MRI via a gradient-enhanced fusion model[J]. Med Phys, 2023, 50(3): 1390-1405. DOI: 10.1002/mp.16164.
[42]
ZHENG B W, SUN G L, DONG L, et al. LD-CSNet: a latent diffusion-based architecture for perceptual Compressed Sensing[J/OL]. Neural Netw, 2024, 179: 106541 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/39089153/. DOI: 10.1016/j.neunet.2024.106541.
[43]
SHEN M H, GAN H P, MA C Y, et al. MTC-CSNet: marrying transformer and convolution for image compressed sensing[J]. IEEE Trans Cybern, 2024, 54(9): 4949-4961. DOI: 10.1109/TCYB.2024.3363748.
[44]
LIN D J, JOHNSON P M, KNOLL F, et al. Artificial intelligence for MR image reconstruction: an overview for clinicians[J]. J Magn Reson Imaging, 2021, 53(4): 1015-1028. DOI: 10.1002/jmri.27078.
[45]
YAMAC M, AKPINAR U, SAHIN E, et al. Generalized tensor summation compressive sensing network (GTSNET): an easy to learn compressive sensing operation[J/OL]. IEEE Trans Image Process, 2023, 32: 5637-5651 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/37773907/. DOI: 10.1109/TIP.2023.3318946.
[46]
KARTHIK A, AGGARWAL K, KAPOOR A, et al. Comprehensive assessment of imaging quality of artificial intelligence-assisted compressed sensing-based MR images in routine clinical settings[J/OL]. BMC Med Imaging, 2024, 24(1): 284 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/39434010/. DOI: 10.1186/s12880-024-01463-6.
[47]
ITO Y, UEDA H, OIDA T, et al. Simplified shielded MEG-MRI multimodal system with scalar-mode optically pumped magnetometers as MEG sensors[J/OL]. Sci Rep, 2024, 14(1): 25867 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/39468155/. DOI: 10.1038/s41598-024-77089-z.
[48]
LIU H B, DENG D L, ZENG W L, et al. AI-assisted compressed sensing and parallel imaging sequences for MRI of patients with nasopharyngeal carcinoma: comparison of their capabilities in terms of examination time and image quality[J]. Eur Radiol, 2023, 33(11): 7686-7696. DOI: 10.1007/s00330-023-09742-6.
[49]
CAO J J, LIU N, ZHONG M M, et al. Application of artificial intelligence-assisted compressed sensing technology in brain 3D T2-FLAIR sequence acquisition and evaluation of white matter hyperintensity[J]. Chin J Magn Reson Imag, 2024, 15(2): 135-139, 146. DOI: 10.12015/issn.1674-8034.2024.02.020.
[50]
FRINDEL C, ROBINI M C, ROUSSEAU D. A 3-D spatio-temporal deconvolution approach for MR perfusion in the brain[J]. Med Image Anal, 2014, 18(1): 144-160. DOI: 10.1016/j.media.2013.10.004.
[51]
LUO H D, LIU Y Y Q, ZHANG H N, et al. Optimization of multi-parameter MRI with flexible design sequences in the saddle area based on artificial intelligence-assisted compressed sensing technology[J]. Chin J Magn Reson Imag, 2024, 15(12): 150-156. DOI: 10.12015/issn.1674-8034.2024.12.022.
[52]
KIJOWSKI R, FRITZ J. Emerging technology in musculoskeletal MRI and CT[J]. Radiology, 2023, 306(1): 6-19. DOI: 10.1148/radiol.220634.
[53]
PRIYANKA, KADAVIGERE R, S S N, et al. Impact of artificial intelligence assisted compressed sensing technique on scan time and image quality in musculoskeletal MRI - A systematic review[J]. Radiography (Lond), 2024, 30(6): 1704-1712. DOI: 10.1016/j.radi.2024.08.012.
[54]
NI M, HE M, YANG Y X, et al. Application research of AI-assisted compressed sensing technology in MRI scanning of the knee joint: 3D-MRI perspective[J]. Eur Radiol, 2024, 34(5): 3046-3058. DOI: 10.1007/s00330-023-10368-x.
[55]
DRATSCH T, ZÄSKE C, SIEDEK F, et al. Reconstruction of 3D knee MRI using deep learning and compressed sensing: a validation study on healthy volunteers[J/OL]. Eur Radiol Exp, 2024, 8(1): 47 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/38616220/. DOI: 10.1186/s41747-024-00446-0.
[56]
TERZIS R, DRATSCH T, HAHNFELDT R, et al. Five-minute knee MRI: an AI-based super resolution reconstruction approach for compressed sensing. A validation study on healthy volunteers[J/OL]. Eur J Radiol, 2024, 175: 111418 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/38490130/. DOI: 10.1016/j.ejrad.2024.111418.
[57]
WANG Q Z, ZHAO W L, XING X Y, et al. Feasibility of AI-assisted compressed sensing protocols in knee MR imaging: a prospective multi-reader study[J]. Eur Radiol, 2023, 33(12): 8585-8596. DOI: 10.1007/s00330-023-09823-6.
[58]
DE ANGELIS GUERRA DOTTA T, ASSUNÇÃO J H, BAPTISTA E, et al. Diagnostic accuracy of non-contrast MRI in frozen shoulder[J]. Arch Orthop Trauma Surg, 2024, 144(3): 1149-1159. DOI: 10.1007/s00402-023-05184-3.
[59]
DRATSCH T, SIEDEK F, ZÄSKE C, et al. Reconstruction of shoulder MRI using deep learning and compressed sensing: a validation study on healthy volunteers[J/OL]. Eur Radiol Exp, 2023, 7(1): 66 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/37880546/. DOI: 10.1186/s41747-023-00377-2.
[60]
FOREMAN S C, NEUMANN J, HAN J, et al. Deep learning-based acceleration of compressed sense MR imaging of the ankle[J]. Eur Radiol, 2022, 32(12): 8376-8385. DOI: 10.1007/s00330-022-08919-9.
[61]
SUI H, GONG Y, LIU L, et al. Comparison of artificial intelligence-assisted compressed sensing (ACS) and routine two-dimensional sequences on lumbar spine imaging[J/OL]. J Pain Res, 2023, 16: 257-267 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/36744117/. DOI: 10.2147/JPR.S388219.
[62]
SARTORETTI E, SARTORETTI T, BERTULLI L, et al. Deep learning constrained compressed sensing reconstruction improves high-resolution three-dimensional (3D) T2-weighted turbo spin echo magnetic resonance imaging (MRI) of the lumbar spine[J/OL]. Clin Radiol, 2024, 79(12): e1514-e1521 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/39379271/. DOI: 10.1016/j.crad.2024.09.004.
[63]
LIU B Q, LI Y, HAN M H, et al. Polygenic risk score, dietary inflammatory potential, and incident coronary heart disease[J/OL]. Eur J Prev Cardiol, 2025 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/39881513/. DOI: 10.1093/eurjpc/zwaf009.
[64]
ZAHERGIVAR A, KOCHER M, WALTZ J, et al. The diagnostic value of non-contrast magnetic resonance coronary angiography in the assessment of coronary artery disease: a systematic review and meta-analysis[J/OL]. Heliyon, 2021, 7(3): e06386 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/33817362/. DOI: 10.1016/j.heliyon.2021.e06386.
[65]
WU X, YUE X, PENG P F, et al. Accelerated 3D whole-heart non-contrast-enhanced mDIXON coronary MR angiography using deep learning-constrained compressed sensing reconstruction[J/OL]. Insights Imaging, 2024, 15(1): 224 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/39298070/. DOI: 10.1186/s13244-024-01797-3.
[66]
WU X, TANG L, LI W J, et al. Feasibility of accelerated non-contrast-enhanced whole-heart bSSFP coronary MR angiography by deep learning-constrained compressed sensing[J]. Eur Radiol, 2023, 33(11): 8180-8190. DOI: 10.1007/s00330-023-09740-8.
[67]
XU Z Q, WANG J, CHENG W, et al. Incremental significance of myocardial oedema for prognosis in hypertrophic cardiomyopathy[J]. Eur Heart J Cardiovasc Imaging, 2023, 24(7): 876-884. DOI: 10.1093/ehjci/jead065.
[68]
YAN X H, LUO Y, RAN L P, et al. Clinical application of high resolution myocardial T2-weighted dark blood sequence based on artificial intelligence assisted compressed sensing technique in myocardial edema[J]. Chin J Magn Reson Imag, 2022, 13(6): 76-80, 97. DOI: 10.12015/issn.1674-8034.2022.06.015.
[69]
YANG F, PAN X L, ZHU K, et al. Accelerated 3D high-resolution T2-weighted breast MRI with deep learning constrained compressed sensing, comparison with conventional T2-weighted sequence on 3.0 T[J/OL]. Eur J Radiol, 2022, 156: 110562 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/36270194/. DOI: 10.1016/j.ejrad.2022.110562.
[70]
NAGATA H, OHNO Y, YOSHIKAWA T, et al. Compressed sensing with deep learning reconstruction: Improving capability of gadolinium-EOB-enhanced 3D T1WI[J/OL]. Magn Reson Imaging, 2024, 108: 67-76 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/38309378/. DOI: 10.1016/j.mri.2024.01.015.
[71]
LI H L, HU C L, YANG Y, et al. Single-breath-hold T2WI MRI with artificial intelligence-assisted technique in liver imaging: as compared with conventional respiratory-triggered T2WI[J/OL]. Magn Reson Imaging, 2022, 93: 175-180 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/35987419/. DOI: 10.1016/j.mri.2022.08.012.
[72]
HU C L, LIU Q F, LI H L, et al. Application value of artificial intelligence-assisted compressed sensing technique in liver T2WI scan[J]. Radiol Pract, 2023, 38(4): 508-513. DOI: 10.13609/j.cnki.1000-0313.2023.04.023.
[73]
BARDIS M D, HOUSHYAR R, CHANG P D, et al. Applications of artificial intelligence to prostate multiparametric MRI (mpMRI): current and emerging trends[J/OL]. Cancers (Basel), 2020, 12(5): 1204 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/32403240/. DOI: 10.3390/cancers12051204.
[74]
SHEN L T, XU H, LIAO Q, et al. A feasibility study of AI-assisted compressed sensing in prostate T2-weighted imaging[J]. Acad Radiol, 2024, 31(12): 5022-5033. DOI: 10.1016/j.acra.2024.06.048.
[75]
JURKA M, MACOVA I, WAGNEROVA M, et al. Deep-learning-based reconstruction of T2-weighted magnetic resonance imaging of the prostate accelerated by compressed sensing provides improved image quality at half the acquisition time[J]. Quant Imaging Med Surg, 2024, 14(5): 3534-3543. DOI: 10.21037/qims-23-1488.
[76]
ZHAO Y J, PENG C D, WANG S F, et al. The feasibility investigation of AI-assisted compressed sensing in kidney MR imaging: an ultra-fast T2WI imaging technology[J/OL]. BMC Med Imaging, 2022, 22(1): 119 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/35787673/. DOI: 10.1186/s12880-022-00842-1.
[77]
LIU K, SUN H T, CHEN C Z, et al. Application of compressed sensing deep learning-based reconstruction in uterine T2WI MR imaging[J]. Chin Comput Med Imag, 2023, 29(1): 58-61. DOI: 10.19627/j.cnki.cn31-1700/th.2023.01.020.
[78]
UEDA T, OHNO Y, YAMAMOTO K, et al. Compressed sensing and deep learning reconstruction for women's pelvic MRI denoising: Utility for improving image quality and examination time in routine clinical practice[J/OL]. Eur J Radiol, 2021, 134: 109430 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/33276249/. DOI: 10.1016/j.ejrad.2020.109430.
[79]
UEDA T, YAMAMOTO K, YAZAWA N, et al. Efficacy of compressed sensing and deep learning reconstruction for adult female pelvic MRI at 1.5 T[J/OL]. Eur Radiol Exp, 2024, 8(1): 103 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/39254920/. DOI: 10.1186/s41747-024-00506-5.
[80]
TANG H, PENG C D, ZHAO Y J, et al. An applicability study of rapid artificial intelligence-assisted compressed sensing (ACS) in anal fistula magnetic resonance imaging[J/OL]. Heliyon, 2023, 10(1): e22817 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/38169794/. DOI: 10.1016/j.heliyon.2023.e22817.
[81]
ZHENG G Y, FU J Y, WANG Z, et al. AI-assisted compressed sensing MRI improves imaging quality in rectal cancer: a comparative study with conventional acceleration techniques[J]. Quant Imaging Med Surg, 2025, 15(3): 2547-2560. DOI: 10.21037/qims-24-1317.

PREV Research progress on multimodal MRI and radiomics for assessing tumor budding in rectal cancer
NEXT Clinical application progress of artificial intelligence-assisted compressed sensing technology in MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn