Share:
Share this content in WeChat
X
Clinical Article
Value of diffusion tensor magnetic resonance imaging in assessing corpus callosum development in children with autism
LI Yuxin  MA Bingxiang  DANG Weili  ZHOU Rongyi  CUI Jieqiong  HE Junjing 

Cite this article as: LI Y X, MA B X, DANG W L, et al. Value of diffusion tensor magnetic resonance imaging in assessing corpus callosum development in children with autism[J]. Chin J Magn Reson Imaging, 2025, 16(9): 1-7. DOI:10.12015/issn.1674-8034.2025.09.001.


[Abstract] Objective By analyzing neuroimaging features of corpus callosum (CC) subregions in children aged 1 to 12 years with autism spectrum disorder (ASD), this study summarizes structural alterations and dynamic developmental trajectories of CC subregions in ASD children.Materials and Methods Retrospective data from 153 children diagnosed with ASD at their first visit of the Children's Brain Disease Diagnosis and Rehabilitation Center at the First Affiliated Hospital of Henan University of Chinese Medicine between June 2021 and December 2023 were collected. The children were divided into three groups based on their age at visit: the 1 to 3 years group (47 cases, 36 males, 11 females), the 3 to 6 years group (89 cases, 70 males, 19 females), and the 6 to 12 years group (17 cases, 14 males, 3 females). Subsequently, cranial magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) scans were performed. Using DTI-related post-processing software, the fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were measured in the rostrum, genu, body, and splenium of the CC. The differences in DTI parameters were compared among ASD children by gender, age groups, and CC subregions.Results No significant differences were observed in FA and ADC values between different genders across all age groups (P > 0.05). With increasing age, FA values gradually increased and ADC values gradually decreased in children with ASD. Correlation analysis of DTI parameters in the CC subregions with age revealed that: except for the rostrum of CC (r = -0.064, P = 0.433; r = -0.029, P = 0.727), FA values in the genu, body, and splenium of CC showed positive correlations with age (r = 0.335, P = 0.001; r = 0.350, P = 0.001; r = 0.264, P = 0.001), while ADC values showed negative correlations with age (r = -0.466, P= 0.001; r = -0.458, P = 0.001; r = -0.482, P = 0.001). Age-related differences in DTI parameters: the rostrum parameters of the CC showed no statistically significant differences among age groups (P > 0.05). For the genu, body, and splenium of the CC: statistically significant differences existed between the 1 to 3 years group and the 3 to 6 years group, as well as between the 1 to 3 years group and the 6 to 12 years group (P < 0.05). FA values in all CC subregions, along with ADC values in the genu and splenium, showed no statistically significant differences between the 3 to 6 years group and the 6 to 12 years group (P > 0.05). Analysis of DTI parameters in subregions of the CC in children with ASD revealed that FA values decreased sequentially in the splenium, genu, body, and rostrum of the CC, while ADC values increased sequentially in the genu, splenium, body, and rostrum of the CC. Regarding age-specific differences: Only the 1 to 3 years group showed statistically significant differences (P < 0.05) in FA and ADC values across all CC subregions. In the 3 to 6 years and 6 to 12 years groups, differences in some brain regions were not statistically significant (P > 0.05).Conclusions DTI can systematically analyze structural alterations and dynamic evolution patterns in subregions of the CC in children with ASD, providing more objective and comprehensive neuroimaging evidence for clinical diagnosis and exploration of ASD pathological mechanisms.
[Keywords] autism spectrum disorder;magnetic resonance imaging;diffusion tensor imaging;corpus callosum;child development

LI Yuxin1, 2   MA Bingxiang1, 2*   DANG Weili1   ZHOU Rongyi1   CUI Jieqiong1   HE Junjing3  

1 Department of Paediatrics, Henan University of Chinese Medicine First Affiliated Hospital, Zhengzhou 450046, China

2 College of Pediatrics, Henan University of Chinese Medicine, Zhengzhou 450046, China

3 Department of Magnetic Resonance, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450046, China

Corresponding author: MA B X, E-mail: mbx1963@126.com

Conflicts of interest   None.

Received  2024-12-16
Accepted  2025-08-28
DOI: 10.12015/issn.1674-8034.2025.09.001
Cite this article as: LI Y X, MA B X, DANG W L, et al. Value of diffusion tensor magnetic resonance imaging in assessing corpus callosum development in children with autism[J]. Chin J Magn Reson Imaging, 2025, 16(9): 1-7. DOI:10.12015/issn.1674-8034.2025.09.001.

[1]
CANALE R R, LARSON C, THOMAS R P, et al. Investigating frank autism: clinician initial impressions and autism characteristics[J/OL]. Mol Autism, 2024, 15(1): 48 [2024-12-15]. https://pubmed.ncbi.nlm.nih.gov/39538274/. DOI: 10.1186/s13229-024-00627-z.
[2]
MAENNER M J, WARREN Z, WILLIAMS A R, et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, United States, 2020[J]. MMWR Surveill Summ, 2023, 72(2): 1-14. DOI: 10.15585/mmwr.ss7202a1.
[3]
SHAW K A, WILLIAMS S, PATRICK M E, et al. Prevalence and early identification of autism spectrum disorder among children aged 4 and 8 years - autism and developmental disabilities monitoring network, 16 sites, United States, 2022[J]. MMWR Surveill Summ, 2025, 74(2): 1-22. DOI: 10.15585/mmwr.ss7402a1.
[4]
KIM G S, CHANDIO B Q, BENAVIDEZ S M, et al. Mapping along-tract white matter microstructural differences in autism[J/OL]. bioRxiv, 2025: 2025.03.21.644498 [2024-12-15]. https://pubmed.ncbi.nlm.nih.gov/40196471/. DOI: 10.1101/2025.03.21.644498.
[5]
KIM J H, BAE H Y, WU W C, et al. SCN2A-linked myelination deficits and synaptic plasticity alterations drive auditory processing disorders in ASD[J/OL]. Res Sq, 2024: rs.3.rs-4925935 [2024-12-15]. https://pubmed.ncbi.nlm.nih.gov/39257993/. DOI: 10.21203/rs.3.rs-4925935/v1.
[6]
FARAJI R, GANJI Z, ZAMANPOUR S A, et al. Impaired white matter integrity in infants and young children with autism spectrum disorder: What evidence does diffusion tensor imaging provide?[J/OL]. Psychiatry Res Neuroimaging, 2023, 335: 111711 [2024-12-15]. https://pubmed.ncbi.nlm.nih.gov/37741094/. DOI: 10.1016/j.pscychresns.2023.111711.
[7]
ZHANG S J, JIANG L P, HU Z, et al. T1w/T2w ratio maps identify children with autism spectrum disorder and the relationships between myelin-related changes and symptoms[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2024, 134: 111040 [2024-12-15]. https://pubmed.ncbi.nlm.nih.gov/38806093/. DOI: 10.1016/j.pnpbp.2024.111040.
[8]
BLAAUW J, MEINERS L C. The splenium of the corpus callosum: embryology, anatomy, function and imaging with pathophysiological hypothesis[J]. Neuroradiology, 2020, 62(5): 563-585. DOI: 10.1007/s00234-019-02357-z.
[9]
WEBER C F, LAKE E M R, HAIDER S P, et al. Age-dependent white matter microstructural disintegrity in autism spectrum disorder[J/OL]. Front Neurosci, 2022, 16: 957018 [2024-12-15]. https://pubmed.ncbi.nlm.nih.gov/36161157/. DOI: 10.3389/fnins.2022.957018.
[10]
JUNG M, TU Y H, LANG C A, et al. Decreased structural connectivity and resting-state brain activity in the lateral occipital cortex is associated with social communication deficits in boys with autism spectrum disorder[J/OL]. Neuroimage, 2019, 190: 205-212 [2024-12-15]. https://pubmed.ncbi.nlm.nih.gov/28927730/. DOI: 10.1016/j.neuroimage.2017.09.031.
[11]
PAUL L K, CORSELLO C, KENNEDY D P, et al. Agenesis of the corpus callosum and autism: a comprehensive comparison[J]. Brain, 2014, 137(Pt 6): 1813-1829. DOI: 10.1093/brain/awu070.
[12]
ZHANG M X, HUANG Y, JIAO J, et al. Transdiagnostic symptom subtypes across autism spectrum disorders and attention deficit hyperactivity disorder: validated by measures of neurocognition and structural connectivity[J/OL]. BMC Psychiatry, 2022, 22(1): 102 [2024-12-15]. https://pubmed.ncbi.nlm.nih.gov/35139813/. DOI: 10.1186/s12888-022-03734-4.
[13]
QING P, ZHANG X D, LIU Q, et al. Structure-function coupling in white matter uncovers the hypoconnectivity in autism spectrum disorder[J/OL]. Mol Autism, 2024, 15(1): 43 [2024-12-15]. https://pubmed.ncbi.nlm.nih.gov/39367506/. DOI: 10.1186/s13229-024-00620-6.
[14]
SHIN Y S, CHRISTENSEN D, WANG J Y, et al. Transcallosal white matter and cortical gray matter variations in autistic adults aged 30-73 years[J/OL]. Mol Autism, 2025, 16(1): 16 [2024-12-15]. https://pubmed.ncbi.nlm.nih.gov/40050930/. DOI: 10.1186/s13229-025-00652-6.
[15]
LI Y X, DANG W L, ZHOU R Y, et al. New progress in the application of diffusion tensor imaging in autism spectrum disorders[J]. Chin J Magn Reson Imag, 2022, 13(11): 119-124. DOI: 10.12015/issn.1674-8034.2022.11.023.
[16]
LI Y X, DANG W L, MA B X, et al. Evaluation of the therapeutic efficacy of acupuncture in children with autism using DTI[J]. Chin J Magn Reson Imag, 2024, 15(1): 61-69. DOI: 10.12015/issn.1674-8034.2024.01.010.
[17]
SHAO H Y, LIU Q F, SAEED A, et al. Feasibility of diffusion tensor imaging in cervical spondylotic myelopathy using MUSE sequence[J]. Spine J, 2024, 24(8): 1352-1360. DOI: 10.1016/j.spinee.2024.03.015.
[18]
ZHANG S S, LARSEN B, SYDNOR V J, et al. In vivo whole-cortex marker of excitation-inhibition ratio indexes cortical maturation and cognitive ability in youth[J/OL]. Proc Natl Acad Sci USA, 2024, 121(23): e2318641121 [2024-12-15]. https://pubmed.ncbi.nlm.nih.gov/38814872/. DOI: 10.1073/pnas.2318641121.
[19]
LI W, FAN L Z, SONG M, et al. Review of brain development and brain atlases in children and adolescents[J]. J Image Graph, 2024, 29(6): 1555-1574. DOI: 10.11834/jig.240021.
[20]
WITTMANN M K, SCHEUPLEIN M, GIBBONS S G, et al. Local and global reward learning in the lateral frontal cortex show differential development during human adolescence[J/OL]. PLoS Biol, 2023, 21(3): e3002010 [2024-12-15]. https://pubmed.ncbi.nlm.nih.gov/36862726/. DOI: 10.1371/journal.pbio.3002010.
[21]
BAI Z L, QI W, ZHANG X N, et al. Structural MRI and diffusion tensor imaging of corpus callosum in autism[J]. Chin J Med Imag Technol, 2010, 26(5): 825-827. DOI: 10.13929/j.1003-3289.2010.05.031.
[22]
TANDON R, GAEBEL W, BARCH D M, et al. Definition and description of schizophrenia in the DSM-5[J]. Schizophr Res, 2013, 150(1): 3-10. DOI: 10.1016/j.schres.2013.05.028.
[23]
FULCERI F, CARUSO A, MICAI M, et al. Autism diagnosis in children and adolescents: a systematic review and meta-analysis of test accuracy[J/OL]. Neurosci Biobehav Rev, 2025, 173: 106164 [2024-12-15]. https://pubmed.ncbi.nlm.nih.gov/40274203/. DOI: 10.1016/j.neubiorev.2025.106164.
[24]
JIANG Y R, ZHANG Q W. Practical pediatrics of traditional Chinese medicine[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1995.
[25]
BEAULIEU F P, ZUCKERBERG G, COLETTI K, et al. Sedation and anesthesia for imaging of the infant and neonate-a brief review[J]. Pediatr Radiol, 2024, 54(10): 1579-1588. DOI: 10.1007/s00247-024-05995-5.
[26]
ZHANG Y, QIN B, WANG L L, et al. Corpus callosum volumes in children with autism spectrum disorders: sex-associated differences[J]. J Autism Dev Disord, 2023, 53(6): 2421-2429. DOI: 10.1007/s10803-022-05538-7.
[27]
KIM S W, LEE H, SONG D Y, et al. Whole genome sequencing analysis identifies sex differences of familial pattern contributing to phenotypic diversity in autism[J/OL]. Genome Med, 2024, 16(1): 114 [2024-12-15]. https://pubmed.ncbi.nlm.nih.gov/39334436/. DOI: 10.1186/s13073-024-01385-6.
[28]
VIDRIALES-FERNÁNDEZ R, PLAZA-SANZ M, HERNÁNDEZ-LAYNA C, et al. Characterizing the physical and mental health profile of children, adolescents and adults with autism spectrum disorder in Spain[J/OL]. Front Psychiatry, 2023, 14: 1088727 [2024-12-15]. https://pubmed.ncbi.nlm.nih.gov/36970262/. DOI: 10.3389/fpsyt.2023.1088727.
[29]
HARROP C, TOMASZEWSKI B, PUTNAM O, et al. Are the diagnostic rates of autistic females increasing? An examination of state-wide trends[J]. J Child Psychol Psychiatry, 2024, 65(7): 973-983. DOI: 10.1111/jcpp.13939.
[30]
JIANG T T, LI X Q, ZHAO T T, et al. Advances in research on gender differences in autism spectrum disorders[J]. Chin J Contemp Pediatr, 2025, 27(4): 480-486. DOI: 10.7499/j.issn.1008-8830.2411142.
[31]
CUI S H, LU L, REN N N, et al. DTI combined with DKI parameters to evaluate brain abnormalities in preschool children with autism[J]. Radiol Pract, 2024, 39(12): 1660-1666. DOI: 10.13609/j.cnki.1000-0313.2024.12.018.
[32]
GUO L L, WANG D H, ZHANG H, et al. Diffusion tensor imaging for the development of neonatal brain myelin[J]. Chin J Magn Reson Imag, 2019, 10(10): 748-751. DOI: 10.12015/issn.1674-8034.2019.10.006.
[33]
LU L, ZHOU S, HUANG Z X, et al. An analysis of diffusion tensor imaging of genu and splenium in adult corpus callosum[J]. Jiangsu Med J, 2019, 45(2): 156-159, 217. DOI: 10.19460/j.cnki.0253-3685.2019.02.015.
[34]
LIU S L, ZHOU Y S, CHEN X H, et al. Application of synthetic MRI in neonatal brain myelin development evaluation[J]. Radiol Pract, 2025, 40(1): 78-83. DOI: 10.13609/j.cnki.1000-0313.2025.01.014.
[35]
MAH A, GEERAERT B, LEBEL C. Detailing neuroanatomical development in late childhood and early adolescence using NODDI[J/OL]. PLoS One, 2017, 12(8): e0182340 [2024-12-15]. https://pubmed.ncbi.nlm.nih.gov/28817577/. DOI: 10.1371/journal.pone.0182340.
[36]
CAO L Z. Study on morphological development of corpus callosum in school-age period[D]. Beijing: University of Chinese Academy of Sciences, 2022.
[37]
LI M, IZUMOTO M, WANG Y D, et al. Altered white matter connectivity of ventral language networks in autism spectrum disorder: an automated fiber quantification analysis with multi-site datasets[J/OL]. Neuroimage, 2024, 297: 120731 [2024-12-15]. https://pubmed.ncbi.nlm.nih.gov/39002786/. DOI: 10.1016/j.neuroimage.2024.120731.
[38]
LI M, WANG Y D, TACHIBANA M, et al. Atypical structural connectivity of language networks in autism spectrum disorder: a meta-analysis of diffusion tensor imaging studies[J]. Autism Res, 2022, 15(9): 1585-1602. DOI: 10.1002/aur.2789.
[39]
DUAN K K, EYLER L, PIERCE K, et al. Language, social, and face regions are affected in toddlers with autism and predictive of language outcome[J/OL]. Res Sq, 2023: rs.3.rs-2451837 [2024-12-15]. https://pubmed.ncbi.nlm.nih.gov/36778379/. DOI: 10.21203/rs.3.rs-2451837/v1.
[40]
DUAN K K, EYLER L, PIERCE K, et al. Differences in regional brain structure in toddlers with autism are related to future language outcomes[J/OL]. Nat Commun, 2024, 15(1): 5075 [2024-12-15]. https://pubmed.ncbi.nlm.nih.gov/38871689/. DOI: 10.1038/s41467-024-48952-4.
[41]
XU Y Y, SUN B X, JI Z Z, et al. Subcortical structural alterations in autism spectrum disorder aged 12-18 years old[J]. Chin J Med Imag, 2023, 31(12): 1239-1243. DOI: 10.3969/j.issn.1005-5185.2023.12.001.

PREV Clinical application progress of artificial intelligence-assisted compressed sensing technology in MRI
NEXT Modulation of triple network connectivity in premenstrual syndrome by transcutaneous auricular vagus nerve stimulation: A fMRI study
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn