Share:
Share this content in WeChat
X
Clinical Article
Modulation of triple network connectivity in premenstrual syndrome by transcutaneous auricular vagus nerve stimulation: A fMRI study
LIN Shihuan  ZHANG Yan  LAI Yinqi  ZHANG Qingping  CHEN Ya  LAI Ziyan  OU Yuanyuan  LI Shanshan  ZHOU Hui  TUO Sijing  WU Yuejuan  LIU Zhen  DENG Demao 

Cite this article as: LIN S H, ZHANG Y, LAI Y Q, et al. Modulation of triple network connectivity in premenstrual syndrome by transcutaneous auricular vagus nerve stimulation: A fMRI study[J]. Chin J Magn Reson Imaging, 2025, 16(9): 8-14, 27. DOI:10.12015/issn.1674-8034.2025.09.002.


[Abstract] Objective To investigate the immediate effects of transcutaneous auricular vagus nerve stimulation (taVNS) at different stimulation frequencies on abnormal functional connectivity (FC) and functional network connectivity (FNC) within the triple network model (TNM) in patients with premenstrual syndrome (PMS).Materials and Methods This single-center, prospective study enrolled 56 patients with PMS and 67 healthy controls (HC). All participants underwent resting-state functional magnetic resonance imaging (rs-fMRI) and clinical assessments before and after taVNS. Independent component analysis (ICA) was used to extract FC and FNC of key brain networks within TNM, including the default mode network (DMN), executive control network (ECN), and salience network (SN). Based on the TNM network templates, two-sample t-tests were conducted to compare differences in FC and FNC between the PMS and HC groups, and correlation analyses were performed between the altered brain regions and clinical psychological scale scores. Furthermore, paired-sample t-tests were used to evaluate the modulatory effects of taVNS at different stimulation frequencies (2 Hz, 25 Hz, and sham stimulation) on abnormal FC and FNC within the TNM in PMS patients.Results Compared to HC, patients with PMS exhibited increased FC within the SN, specifically in the left inferior frontal gyrus (LIFG), insula, and superior temporal gyrus (STG), which positively correlated with emotional, physical, cognitive, and behavioral symptoms (r = 0.377-0.403, P < 0.05, FDR corrected). Altered FNC was also observed, with decreased SN-right ECN (rECN), increased SN-dorsal DMN(dDMN) and dDMN-rECN, the latter negatively associated with physical scores (r = -0.18, P < 0.05, FDR corrected). Following taVNS, both 2 Hz and 25 Hz significantly reduced FC within the SN in PMS patients (P < 0.05, FDR corrected). Specifically, 2 Hz mainly modulated the prefrontal cortex, LIFG, insula, and STG, while 25 Hz predominantly affected the STG. After sham stimulation (st-taVNS), no significant FC changes were observed within the SN in PMS patients. However, 25 Hz-taVNS led to a further decrease in FNC between the SN and rECN (P < 0.05, FDR corrected), whereas no significant changes were observed in the HC group.Conclusions TaVNS modulates abnormal FC and FNC within TNM-related brain networks in PMS patients. The immediate modulation effects vary by stimulation frequency, indicating the potential need for personalized frequency selection based on individual symptoms.
[Keywords] premenstrual syndrome;transcutaneous auricular vagus nerve stimulation;magnetic resonance imaging;functional connectivity;functional network connectivity

LIN Shihuan1   ZHANG Yan2   LAI Yinqi2   ZHANG Qingping2   CHEN Ya3   LAI Ziyan2   OU Yuanyuan2   LI Shanshan2   ZHOU Hui2   TUO Sijing2   WU Yuejuan4   LIU Zhen5   DENG Demao1, 2*  

1 Faculty of Medicine, Guangxi University, Nanning 530004, China

2 Department of Radiology, Guangxi Zhuang Autonomous Region People's Hospital, Nanning 530021, China

3 Department of Radiology, Wuhan No. 1 Hospital, Wuhan 430014, China

4 Department of Neurology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China

5 Department of Gynecology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China

Corresponding author: DENG D M, E-mail: demaodeng@163.com

Conflicts of interest   None.

Received  2025-05-08
Accepted  2025-09-03
DOI: 10.12015/issn.1674-8034.2025.09.002
Cite this article as: LIN S H, ZHANG Y, LAI Y Q, et al. Modulation of triple network connectivity in premenstrual syndrome by transcutaneous auricular vagus nerve stimulation: A fMRI study[J]. Chin J Magn Reson Imaging, 2025, 16(9): 8-14, 27. DOI:10.12015/issn.1674-8034.2025.09.002.

[1]
QIAO M, ZHANG H, LIU H, et al. Prevalence of premenstrual syndrome and premenstrual dysphoric disorder in a population-based sample in China[J]. Eur J Obstet Gynecol Reprod Biol, 2012, 162: 83-86. DOI: 10.1016/j.ejogrb.2012.01.017.
[2]
GREENE R, DALTON K. The premenstrual syndrome[J]. Br Med J, 1953, 1: 1007-1014. DOI: 10.1136/bmj.1.4818.1007.
[3]
SCHIOLA A, LOWIN J, LINDEMANN M, et al. The burden of moderate/severe premenstrual syndrome and premenstrual dysphoric disorder in a cohort of Latin American women[J]. Value Health, 2011, 14: S93-S95. DOI: 10.1016/j.jval.2011.05.008.
[4]
YANG Y, VALDIMARSDOTTIR U A, MANSON J E, et al. Premenstrual Disorders, Timing of Menopause, and Severity of Vasomotor Symptoms[J/OL]. JAMA Netw Open, 2023, 6: e2334545 [2025-05-08]. https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2809669. DOI: 10.1001/jamanetworkopen.2023.34545.
[5]
DENNERSTEIN L, LEHERT P, HEINEMANN K. Epidemiology of premenstrual symptoms and disorders[J]. Menopause Int, 2012, 18: 48-51. DOI: 10.1258/mi.2012.012013.
[6]
METH E M S, NOGA D A, DUBOL M, et al. The impact of pharmacotherapy for premenstrual dysphoric disorder on sleep[J/OL]. Sleep Med Rev, 2025, 80: 102069 [2025-05-08]. https://doi.org/10.1016/j.smrv.2025.102069. DOI: 10.1016/j.smrv.2025.102069.
[7]
MARJORIBANKS J, BROWN J, O'BRIEN P M, et al. Selective serotonin reuptake inhibitors for premenstrual syndrome[J/OL]. Cochrane Database Syst Rev, 2013, 2013: CD001396 [2025-05-08]. https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD001396.pub3/full. DOI: 10.1002/14651858.CD001396.pub3.
[8]
KLEINSTAUBER M, WITTHOFT M, HILLER W. Cognitive-behavioral and pharmacological interventions for premenstrual syndrome or premenstrual dysphoric disorder: a meta-analysis[J]. J Clin Psychol Med Settings, 2012, 19: 308-319. DOI: 10.1007/s10880-012-9299-y.
[9]
BUSSE J W, MONTORI V M, KRASNIK C, et al. Psychological intervention for premenstrual syndrome: a meta-analysis of randomized controlled trials[J]. Psychother Psychosom, 2009, 78: 6-15. DOI: 10.1159/000162296.
[10]
ZOU N, ZHOU Q, ZHANG Y, et al. Transcutaneous auricular vagus nerve stimulation as a novel therapy connecting the central and peripheral systems: a review[J]. Int J Surg, 2024, 110: 4993-5006. DOI: 10.1097/JS9.0000000000001592.
[11]
BORGMANN D, RIGOUX L, KUZMANOVIC B, et al. Technical Note: Modulation of fMRI brainstem responses by transcutaneous vagus nerve stimulation[J/OL]. Neuroimage, 2021, 244: 118566 [2025-05-08]. https://doi.org/10.1016/j.neuroimage.2021.118566. DOI: 10.1016/j.neuroimage.2021.118566.
[12]
MA L, WANG H B, HASHIMOTO K. The vagus nerve: An old but new player in brain-body communication[J]. Brain Behav Immun, 2025, 124: 28-39. DOI: 10.1016/j.bbi.2024.11.023.
[13]
WANG L, WANG Y, WANG Y, et al. Transcutaneous auricular vagus nerve stimulators: a review of past, present, and future devices[J]. Expert Rev Med Devices, 2022, 19: 43-61. DOI: 10.1080/17434440.2022.2020095.
[14]
ZHANG Y, LIN P, WANG R, et al. Insula-Medial Prefrontal Cortex Functional Connectivity Modulated by Transcutaneous Auricular Vagus Nerve Stimulation: An fMRI Study[J]. IEEE J Biomed Health Inform, 2024, 28: 5962-5970. DOI: 10.1109/JBHI.2024.3423019.
[15]
ZHU S, LIU Q, ZHANG X, et al. Transcutaneous auricular vagus nerve stimulation enhanced emotional inhibitory control via increasing intrinsic prefrontal couplings[J/OL]. Int J Clin Health Psychol, 2024, 24: 100462 [2025-05-08]. https://doi.org/10.1016/j.ijchp.2024.100462. DOI: 10.1016/j.ijchp.2024.100462.
[16]
RAO Y, LIU W, ZHU Y, et al. Altered functional brain network patterns in patients with migraine without aura after transcutaneous auricular vagus nerve stimulation[J/OL]. Sci Rep, 2023, 13: 9604 [2025-05-08]. https://doi.org/10.1038/s41598-023-36437-1. DOI: 10.1038/s41598-023-36437-1.
[17]
SUN J, GUO C, MA Y, et al. Immediate modulatory effects of transcutaneous auricular vagus nerve stimulation on the resting state of major depressive disorder[J]. J Affect Disord, 2023, 325: 513-521. DOI: 10.1016/j.jad.2023.01.035.
[18]
THIEBAUT DE SCHOTTEN M, FORKEL S J. The emergent properties of the connected brain[J]. Science, 2022, 378: 505-510. DOI: 10.1126/science.abq2591.
[19]
MENON V. Large-scale brain networks and psychopathology: a unifying triple network model[J]. Trends Cogn Sci, 2011, 15: 483-506. DOI: 10.1016/j.tics.2011.08.003.
[20]
LIU H, ZHANG G, ZHENG H, et al. Dynamic Dysregulation of the Triple Network of the Brain in Mild Traumatic Brain Injury and Its Relationship With Cognitive Performance[J]. J Neurotrauma, 2024, 41: 879-886. DOI: 10.1089/neu.2022.0257.
[21]
ZHANG Y, LIN L, ZHOU D, et al. Age-related unstable transient states and imbalanced activation proportion of brain networks in people with autism spectrum disorder: A resting-state fMRI study using coactivation pattern analyses[J]. Netw Neurosci, 2024, 8: 1173-1191. DOI: 10.1162/netn_a_00396.
[22]
CAO J C, SUI W Y, YU D H, et al. Analysis of resting-state dynamic functional connectivity in patients with alcohol dependence based on the triple network model[J]. Radiol Prac, 2024, 39(2): 181-188. DOI: 10.13609/j.cnki.1000-0313.2024.02.007.
[23]
REUVENI I, DAN R, CANETTI L, et al. Aberrant Intrinsic Brain Network Functional Connectivity During a Face-Matching Task in Women Diagnosed With Premenstrual Dysphoric Disorder[J]. Biol Psychiatry, 2023, 94: 492-500. DOI: 10.1016/j.biopsych.2023.04.001.
[24]
PETERSEN N, GHAHREMANI D G, RAPKIN A J, et al. Resting-state functional connectivity in women with PMDD[J/OL]. Transl Psychiatry, 2019, 9: 339 [2025-05-08]. https://doi.org/10.1038/s41398-019-0670-8. DOI: 10.1038/s41398-019-0670-8.
[25]
LIN S, ZHANG Y, HUANG J, et al. Functional dysconnectivity of the triple network in women with premenstrual syndrome[J/OL]. Psychiatry Res Neuroimaging, 2025, 349: 111973 [2025-05-08]. https://doi.org/10.1016/j.pscychresns.2025.111973. DOI: 10.1016/j.pscychresns.2025.111973.
[26]
PAYNE L A, SEIDMAN L C, NAPADOW V, et al. Functional connectivity associations with menstrual pain characteristics in adolescents: an investigation of the triple network model[J]. Pain, 2025, 166: 338-346. DOI: 10.1097/j.pain.0000000000003334.
[27]
STEINER M, MACDOUGALL M, BROWN E. The premenstrual symptoms screening tool (PSST) for clinicians[J]. Arch Womens Ment Health, 2003, 6: 203-209. DOI: 10.1007/s00737-003-0018-4.
[28]
ISMAILI E, WALSH S, O'BRIEN P M S, et al. Fourth consensus of the International Society for Premenstrual Disorders (ISPMD): auditable standards for diagnosis and management of premenstrual disorder[J]. Arch Womens Ment Health, 2016, 19: 953-958. DOI: 10.1007/s00737-016-0631-7.
[29]
ESPINOZA F A, ANDERSON N E, VERGARA V M, et al. Resting-state fMRI dynamic functional network connectivity and associations with psychopathy traits[J/OL]. Neuroimage Clin, 2019, 24: 101970 [2025-05-08]. https://doi.org/10.1016/j.nicl.2019.101970. DOI: 10.1016/j.nicl.2019.101970.
[30]
ALLEN E A, ERHARDT E B, DAMARAJU E, et al. A baseline for the multivariate comparison of resting-state networks[J/OL]. Front Syst Neurosci, 2011, 5: 2 [2025-05-08]. https://doi.org/10.3389/fnsys.2011.00002. DOI: 10.3389/fnsys.2011.00002.
[31]
MANTINI D, PERRUCCI M G, DEL GRATTA C, et al. Electrophysiological signatures of resting state networks in the human brain[J]. Proc Natl Acad Sci U S A, 2007, 104: 13170-13175. DOI: 10.1073/pnas.0700668104.
[32]
WANG L, QIN Y, YANG S, et al. Posterior default mode network is associated with the social performance in male children with autism spectrum disorder: A dynamic causal modeling analysis based on triple-network model[J/OL]. Hum Brain Mapp, 2024, 45: e26750 [2025-05-08]. https://onlinelibrary.wiley.com/doi/full/10.1002/hbm.26750. DOI: 10.1002/hbm.26750.
[33]
LIU Q, LI R, ZHOU R, et al. Abnormal Resting-State Connectivity at Functional MRI in Women with Premenstrual Syndrome[J/OL]. PLoS One, 2015, 10: e0136029 [2025-05-08]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136029. DOI: 10.1371/journal.pone.0136029.
[34]
BAUER S, BAIER H, BAUMGARTNER C, et al. Transcutaneous Vagus Nerve Stimulation (tVNS) for Treatment of Drug-Resistant Epilepsy: A Randomized, Double-Blind Clinical Trial (cMPsE02)[J]. Brain Stimul, 2016, 9: 356-363. DOI: 10.1016/j.brs.2015.11.003.
[35]
STRAUBE A, ELLRICH J, EREN O, et al. Treatment of chronic migraine with transcutaneous stimulation of the auricular branch of the vagal nerve (auricular t-VNS): a randomized, monocentric clinical trial[J/OL]. J Headache Pain, 2015, 16: 543 [2025-05-08]. https://doi.org/10.1186/s10194-015-0543-3. DOI: 10.1186/s10194-015-0543-3.

PREV Value of diffusion tensor magnetic resonance imaging in assessing corpus callosum development in children with autism
NEXT Application of 3D-ASL in assessing cerebral blood flow perfusion in patients with neuropsychiatric systemic lupus erythematosus
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn