Share:
Share this content in WeChat
X
Clinical Article
Analysis of MR imaging evolution and related factors of recent small subcortical infarcts with cerebral small vessel disease
HE Xueping  YE Yufeng  LI Yanhua  ZHUANG Gaoming  LIU Dexiang  WANG Li 

Cite this article as: HE X P, YE Y F, LI Y H, et al. Analysis of MR imaging evolution and related factors of recent small subcortical infarcts with cerebral small vessel disease[J]. Chin J Magn Reson Imaging, 2025, 16(9): 22-27. DOI:10.12015/issn.1674-8034.2025.09.004.


[Abstract] Objective To explore related factors affecting MRI evolution of recent small subcortical infarct (RSSI).Materials and Methods A total of 105 patients with RSSI were admitted between August 2019 and September 2024. There were 78 males and 27 females, with mean age (62.77 ± 13.28) years. Clinical information of patients, images data of head MRI were collected. All patients were divided into cavitation group and no cavitation group [white matter hyperintensities (WMH) and disappearance] to analyze related factors affecting evolution with multivariate logistic regression analysis.Results Sixty-three cases (60.00%) developed to cavities, 34 cases (32.38%) evolved into WMH, and 8 cases (7.62%) disappeared. There were significant differences in gender, initial diffusion-weighted imaging (DWI) infarct diameter and number of old lacunes lesion between the two groups (P < 0.05). In logistic regression analysis, initial DWI infarct diameter (OR = 1.394, P < 0.001) and number of old lacunes (OR = 1.455, P = 0.028) was an independent predictor of cavity formation.Conclusions About 60% of RSSI develop to cavitation. All infarct lesions were reduced during follow-up. The RSSI showing larger diameter of infarct lesions and more number of old lacunar infarction have a greater possibility of cavitation.
[Keywords] small subcortical infarct;cerebral small vessel disease;magnetic resonance imaging;imaging evolution;infarct diameter;old lacunes

HE Xueping1   YE Yufeng1, 2   LI Yanhua1   ZHUANG Gaoming1   LIU Dexiang1*   WANG Li1, 2  

1 Department of Radiology, the Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China

2 Medical Imaging Institute of Panyu District, Guangzhou 511400, China

Corresponding author: LIU D X, E-mail: xiangmail3@21cn.com

Conflicts of interest   None.

Received  2025-05-07
Accepted  2025-09-03
DOI: 10.12015/issn.1674-8034.2025.09.004
Cite this article as: HE X P, YE Y F, LI Y H, et al. Analysis of MR imaging evolution and related factors of recent small subcortical infarcts with cerebral small vessel disease[J]. Chin J Magn Reson Imaging, 2025, 16(9): 22-27. DOI:10.12015/issn.1674-8034.2025.09.004.

[1]
DUERING M, BIESSELS G J, BRODTMANN A, et al. Neuroimaging standards for research into small vessel disease-advances since 2013[J]. Lancet Neurol, 2023, 22(7): 602-618. DOI: 10.1016/S1474-4422(23)00131-X.
[2]
YE J Y, WANG Z, GONG Y T, et al. Neuroimaging Standards for Research into Cerebral Small Vessel Disease (STRIVE-2) —Advances Since 2013[J]. Chin J Stroke, 2023, 18(10): 1160-1174. DOI: 10.3969/j.issn.1673-5765.2023.10.009.
[3]
POTTER G M, DOUBAL F N, JACKSON C A, et al. Counting cavitating lacunes underestimates the burden of lacunar infarction[J]. Stroke, 2010, 41(2): 267-272. DOI: 10.1161/strokeaha.109.566307.
[4]
LOOS C M, STAALS J, WARDLAW J M, et al. Cavitation of deep lacunar infarcts in patients with first-ever lacunar stroke: a 2-year follow-up study with MR[J]. Stroke, 2012, 43(8): 2245-2247. DOI: 10.1161/strokeaha.112.660076.
[5]
TANIGUCHI A, SHINDO A, TABEI K I, et al. Imaging Characteristics for Predicting Cognitive Impairment in Patients With Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy[J/OL]. Front Aging Neurosci, 2022, 14: 876437 [2025-05-07]. https://doi.org/10.3389/fnagi.2022.876437. DOI: 10.3389/fnagi.2022.876437.
[6]
AZEEM F, DURRANI R, ZERNA C, et al. Silent brain infarctions and cognition decline: systematic review and meta-analysis[J]. J Neurol, 2020, 267(2): 502-512. DOI: 10.1007/s00415-019-09534-3.
[7]
CHUNG C P, IHARA M, HILAL S, et al. Targeting cerebral small vessel disease to promote healthy aging: Preserving physical and cognitive functions in the elderly[J/OL]. Arch Gerontol Geriat, 2023, 110: 104982 [2025-05-07]. https://doi.org/10.1016/j.archger.2023.104982. DOI: 10.1016/j.archger.2023.104982.
[8]
ANDERE A, JINDAL G, MOLINO J, et al. Volumetric White Matter Hyperintensity Ranges Correspond to Fazekas Scores on Brain MRI[J/OL]. J Stroke Cerebrovasc Dis, 2022, 31(4): 106333 [2025-05-07]. https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106333. DOI: 10.1016/j.jstrokecerebrovasdis.2022.106333.
[9]
ZHENG W Q, WANG X C. Research progress on the effect of neuroimaging markers of cerebral small vessel disease on stroke[J]. Chin J Magn Reson Imaging, 2021, 12(4): 96-99. DOI: 10.12015/issn.1674-8034.2021.04.024.
[10]
FRUHWIRTH V, ENZINGER C, FANDLER-HÖFLER S, et al. Baseline white matter hyperintensities affect the course of cognitive function after small vessel disease-related stroke: a prospective observational study[J]. Eur J Neurol, 2021, 28(2): 401-410. DOI: 10.1111/ene.14593.
[11]
OHLMEIER L, NANNONI S, PALLUCCA C, et al. Prevalence of, and risk factors for, cognitive impairment in lacunar stroke[J]. Int J Stroke, 2023, 18(1): 62-69. DOI: 10.1177/17474930211064965.
[12]
YE M, ZHOU Y, CHEN H, et al. Heterogeneity of White Matter Hyperintensity and Cognitive Impairment in Patients with Acute Lacunar Stroke[J/OL]. Brain Sci, 2022, 12(12): 1674 [2025-05-07]. https://doi.org/10.3390/brainsci12121674. DOI: 10.3390/brainsci12121674.
[13]
BENJAMIN P, TRIPPIER S, LAWRENCE A J, et al. Lacunar Infarcts, but Not Perivascular Spaces, Are Predictors of Cognitive Decline in Cerebral Small-Vessel Disease[J]. Stroke, 2018, 49(3): 586-593. DOI: 10.1161/STROKEAHA.117.017526.
[14]
ARTEAGA C, CHENG Y, CLANCY U, et al. Can smaller lacunes derived from recent small subcortical infarcts play a role in cognition at one- year after mild stroke?[J/OL]. Cereb Circ Cogn Behav, 2024, 6: 100249 [2025-05-07]. https://doi.org/10.1016/j.cccb.2024.100249. DOI: 10.1016/j.cccb.2024.100249.
[15]
DUERING M, ADAM R, WOLLENWEBER F A, et al. Within-lesion heterogeneity of subcortical DWI lesion evolution, and stroke outcome: A voxel-based analysis[J]. J Cereb Blood Flow Metab, 2020, 40(7): 1482-1491. DOI: 10.1177/0271678X19865916.
[16]
MOREAU F, PATEL S, LAUZON M L, et al. Cavitation after acute symptomatic lacunar stroke depends on time, location, and MRI sequence[J]. Stroke, 2012, 43(7): 1837-1842. DOI: 10.1161/STROKEAHA.111.647859.
[17]
GATTRINGER T, VALDES HERNANDEZ M, HEYE A, et al. Predictors of Lesion Cavitation After Recent Small Subcortical Stroke[J]. Transl Stroke Res, 2020, 11(3): 402-411. DOI: 10.1007/s12975-019-00741-8.
[18]
WANG M M, ZHANG S S, LIU H, et al. Analysis of related factors affecting evolution of recent small subcortical infarcts with cerebral smallvessel disease[J]. Natl Med J China, 2019, 99(43): 3420-3423. DOI: 10.3760/cma.j.issn.0376-2491.2019.43.014.
[19]
ZHANG X, GE Y, LIANG C, et al. Cavitation of symptomatic acute single small subcortical infarctions[J]. Neurol Sci, 2020, 41(12): 3705-3710. DOI: 10.1007/s10072-020-04509-z.
[20]
KWON H S, CHO A H, LEE M H, et al. Evolution of acute lacunar lesions in terms of size and shape: a PICASSO sub-study[J]. J Neurol, 2019, 266(3): 766-772. DOI: 10.1007/s00415-019-09201-7.
[21]
HONG H, ZHANG R, YU X, et al. Factors Associated With the Occurrence and Evolution of Recent Small Subcortical Infarcts (RSSIs) in Different Locations[J/OL]. Front Aging Neurosci, 2020, 12: 264 [2025-05-07]. https://doi.org/10.3389/fnagi.2020.00264. DOI: 10.3389/fnagi.2020.00264.
[22]
WANG M M, LI Y F, SONG Y J, et al. Association of total cerebral small vessel disease burden with the cavitation of recent small subcortical infarcts[J]. Acta Radiol, 2023, 64(1): 295-300. DOI: 10.1177/02841851211066583.
[23]
GIESE A K, SCHIRMER M D, DALCA A V, et al. White matter hyperintensity burden in acute stroke patients differs by ischemic stroke subtype[J/OL]. Neurology, 2020, 95(1): e79-e88 [2025-05-07]. https://doi.org/10.1212/WNL.0000000000009728. DOI: 10.1212/WNL.0000000000009728.
[24]
DERRAZ I, ABDELRADY M, AHMED R, et al. Impact of White Matter Hyperintensity Burden on Outcome in Large-Vessel Occlusion Stroke[J]. Radiology, 2022, 304(1): 145-152. DOI: 10.1148/radiol.210419.
[25]
PINTER D, GATTRINGER T, ENZINGER C, et al. Longitudinal MRI dynamics of recent small subcortical infarcts and possible predictors[J]. J Cereb Blood Flow Metab, 2019, 39(9): 1669-1677. DOI: 10.1177/0271678X18775215.
[26]
NIKSERESHT G, EVIA A M, NAG S, et al. Neuropathologic correlates of cerebral microbleeds in community-based older adults[J]. Neurobiol Aging, 2023, 129: 89-98. DOI: 10.1016/j.neurobiolaging.2023.05.005.
[27]
ZHANG D D, CAO Y, MU J Y, et al. Inflammatory biomarkers and cerebral small vessel disease: a community-based cohort study[J]. Stroke Vasc Neurol, 2022, 7(4): 302-309. DOI: 10.1136/svn-2021-001102.
[28]
HOFER E, PIRPAMER L, LANGKAMMER C, et al. Heritability of R2* iron in the basal ganglia and cortex[J]. Aging (Albany NY), 2022, 14(16): 6415-6426. DOI: 10.18632/aging.204212.
[29]
XU Y Y, CHAPPELL F M, VALDÉS HERNÁNDEZ M D C, et al. Prevalence and Clinical Implications of Hemosiderin Deposits in Recent Small Subcortical Infarcts[J/OL]. Neurology, 2024, 103(10): e209973 [2025-05-07]. https://doi.org/10.1212/WNL.0000000000209973. DOI: 10.1212/WNL.0000000000209973.
[30]
JIANG S, SHANG W Z, CUI J Y, et al. Prevalence and Predictors of Hemorrhagic Foci on Long-term Follow-up MRI of Recent Single Subcortical Infarcts[J]. Transl Stroke Res, 2025, 16(2): 410-420. DOI: 10.1007/s12975-023-01224-7.

PREV Application of 3D-ASL in assessing cerebral blood flow perfusion in patients with neuropsychiatric systemic lupus erythematosus
NEXT Diagnostic value of magnetic resonance angiography combined with CT angiography in the detection of cerebral vascular malformations in children
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn