Share:
Share this content in WeChat
X
Clinical Article
Diagnostic value of magnetic resonance angiography combined with CT angiography in the detection of cerebral vascular malformations in children
DI Qi  ZHANG Haisan 

Cite this article as: DI Q, ZHANG H S. Diagnostic value of magnetic resonance angiography combined with CT angiography in the detection of cerebral vascular malformations in children[J]. Chin J Magn Reson Imaging, 2025, 16(9): 28-33. DOI:10.12015/issn.1674-8034.2025.09.005.


[Abstract] Objective To study the clinical application value of magnetic resonance angiography (MRA) combined with CT angiography (CTA) in the diagnosis of cerebral vascular malformations (CVMs) in children.Materials and Methods A retrospectively analysis was conducted on the imaging data of 50 children with suspected CVMs who met the inclusion and exclusion criteria admitted to our hospital from January 2024 to December 2024. All children underwent digital subtraction angiography (DSA), CTA and MRA imaging examinations. The detection rates of CTA and MRA and their consistency with gold standard DSA were analyzed. The diagnostic efficacy of CTA, MRA and their combination in children with CVMs was analyzed.Results A total of 38 children with CVMs were detected by DSA. A total of 34 cases were detected by CTA, which was in good agreement with DSA (Kappa value was 0.606); and 33 cases were detected by MRA, and the consistency with DSA was moderate (Kappa value was 0.472); and 40 cases was detected by the combination of CTA and MRA, which was in good agreement with DSA (Kappa value was 0.767). The sensitivity and accuracy of CTA combined with MRA were higher than those of CTA or MRA alone (P < 0.05).Conclusions In the clinical diagnosis of CVMs in children, compared with the diagnoses of CTA or MRA alone, the diagnostic efficiency of MRA combined with CTA is superior.
[Keywords] cerebrovascular malformation;magnetic resonance imaging;CT angiography;magnetic resonance angiography;combined diagnosis

DI Qi   ZHANG Haisan*  

Department of Magnetic Resonance Imaging, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China

Corresponding author: ZHANG H S, E-mail: zhhaisan@163.com

Conflicts of interest   None.

Received  2025-06-12
Accepted  2025-08-27
DOI: 10.12015/issn.1674-8034.2025.09.005
Cite this article as: DI Q, ZHANG H S. Diagnostic value of magnetic resonance angiography combined with CT angiography in the detection of cerebral vascular malformations in children[J]. Chin J Magn Reson Imaging, 2025, 16(9): 28-33. DOI:10.12015/issn.1674-8034.2025.09.005.

[1]
HONGO H, MIYAWAKI S, TERANISHI Y, et al. Genetics of brain arteriovenous malformations and cerebral cavernous malformations[J]. J Hum Genet, 2023, 68(3): 157-167. DOI: 10.1038/s10038-022-01063-8.
[2]
ZAFAR A, FIANI B, HADI H, et al. Cerebral vascular malformations and their imaging modalities[J]. Neurol Sci, 2020, 41(9): 2407-2421. DOI: 10.1007/s10072-020-04415-4.
[3]
WANG S Y, DENG X P, WU Y F, et al. Understanding the pathogenesis of brain arteriovenous malformation: genetic variations, epigenetics, signaling pathways, and immune inflammation[J]. Hum Genet, 2023, 142(12): 1633-1649. DOI: 10.1007/s00439-023-02605-6.
[4]
WU F, QI L, JIN L, et al. Analysis on clinical application value of CT imaging features of spontaneous cerebral hemorrhage of children in postoperative reexamination[J]. Chin J CT MRI, 2021, 19(8): 28-30. DOI: 10.3969/j.issn.1672-5131.2021.08.009.
[5]
KILIAN A, LATINO G A, WHITE A J, et al. Comparing characteristics and treatment of brain vascular malformations in children and adults with HHT[J/OL]. J Clin Med, 2023, 12(7): 2704 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/37048789/. DOI: 10.3390/jcm12072704.
[6]
PHILLIPS H W, SHANAHAN R M, AIYUDU C, et al. Current trends, molecular insights, and future directions toward precision medicine in the management of pediatric cerebral arteriovenous malformations[J]. J Neurosurg Pediatr, 2024, 34(5): 509-518. DOI: 10.3171/2024.6.PEDS22354.
[7]
YILMAZ U. Sinus-cavernosus-fisteln "," carotid-cavernous fistulas[J]. Radiologie, 2024, 64(3): 182-188. DOI: 10.1007/s00117-024-01269-1.
[8]
QIU H L, ZHAI X. Research advances on the pathogenesis and diagnosis and treatment of cerebral cavernous malformation-related epilepsy in children[J]. Chin J Pediatr Surg, 2025, 46(4): 369-373. DOI: 10.3760/cma.j.cn421158-20230712-00011.
[9]
HALLAK H, ALJARAYHI S, ABOU-AL-SHAAR H, et al. Diagnostic accuracy of arterial spin labeling MR imaging in detecting cerebral arteriovenous malformations: a systematic review and meta-analysis[J/OL]. Neurosurg Rev, 2024, 47(1): 492 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/39190141/. DOI: 10.1007/s10143-024-02659-8.
[10]
HUSSEIN A, MALGURIA N. Imaging of vascular malformations[J]. Radiol Clin North Am, 2020, 58(4): 815-830. DOI: 10.1016/j.rcl.2020.02.003.
[11]
JABAL M S, MOHAMMED M A, NESVICK C L, et al. DSA quantitative analysis and predictive modeling of obliteration in cerebral AVM following stereotactic radiosurgery[J]. AJNR Am J Neuroradiol, 2024, 45(10): 1521-1527. DOI: 10.3174/ajnr.A8351.
[12]
ZHANG K. Analysis of the value of nuclear magnetic resonance angiography and spiral CT angiography in the diagnosis of cerebrovascular diseases[J]. China Med Device Inf, 2020, 26(13): 65-66. DOI: 10.15971/j.cnki.cmdi.2020.13.029.
[13]
SCHMIDT V F, MASTHOFF M, CZIHAL M, et al. Imaging of peripheral vascular malformations-current concepts and future perspectives[J/OL]. Mol Cell Pediatr, 2021, 8(1): 19 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/34874510/. DOI: 10.1186/s40348-021-00132-w.
[14]
DU Y, DENG X F, XI Y, et al. Characteristics of cerebral vascular malformation and perfusion evaluated by one-stop cerebral CTP and CTA examination[J]. Chin J CT MRI, 2025, 23(4): 36-38. DOI: 10.3969/j.issn.1672-5131.2025.04.011.
[15]
MARTÍN-NOGUEROL T, CONCEPCIÓN-ARAMENDIA L, LIM C T, et al. Conventional and advanced MRI evaluation of brain vascular malformations[J]. J Neuroimaging, 2021, 31(3): 428-445. DOI: 10.1111/jon.12853.
[16]
ROJAS-VILLABONA A, SOKOLSKA M, SOLBACH T, et al. Planning of gamma knife radiosurgery (GKR) for brain arteriovenous malformations using triple magnetic resonance angiography (triple-MRA)[J]. Br J Neurosurg, 2022, 36(2): 217-227. DOI: 10.1080/02688697.2021.1884649.
[17]
ZHOU M, SU Z J, SHI Z Y, et al. Application of color-coded quantitative digital subtraction angiography in predicting the outcomes of immediate type I and type III endoleaks[J]. J Vasc Surg, 2017, 66(3): 760-767. DOI: 10.1016/j.jvs.2016.11.048.
[18]
HARRAR D B, SUN L R, GOSS M, et al. Cerebral digital subtraction angiography in acute intracranial hemorrhage: considerations in critically ill children[J]. J Child Neurol, 2022, 37(8/9): 693-701. DOI: 10.1177/08830738221106818.
[19]
XIANG W C, YAN L H, ZHAO Y Y, et al. Four-dimensional digital subtraction angiography to assess cerebral arteriovenous malformations[J]. J Neuroimaging, 2023, 33(1): 67-72. DOI: 10.1111/jon.13065.
[20]
GOMYO M, TSUCHIYA K, YOKOYAMA K. Noninvasive dynamic vascular imaging: arterial spin labeling-based noncontrast magnetic resonance digital subtraction angiography for cerebral disease diagnoses[J]. Jpn J Radiol, 2025, 43(7): 1049-1065. DOI: 10.1007/s11604-025-01758-w.
[21]
ISHIKAWA K, NISHIHORI M, IZUMI T, et al. Four-dimensional digital subtraction angiography for the vascular anatomical diagnosis of dural arteriovenous malformation: Comparison with the conventional method[J]. Interv Neuroradiol, 2024, 30(5): 738-745. DOI: 10.1177/15910199221145526.
[22]
DOBROCKY T, MATZINGER M, PIECHOWIAK E I, et al. Benefit of advanced 3D DSA and MRI/CT fusion in neurovascular pathology[J]. Clin Neuroradiol, 2023, 33(3): 669-676. DOI: 10.1007/s00062-022-01260-0.
[23]
ELMORE L R, ESPER C, GRITSIUTA A I, et al. Surgical treatment of spontaneous superficial temporal artery arteriovenous malformation: a case report[J/OL]. Am J Case Rep, 2024, 25: e942839 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/38555492/. DOI: 10.12659/AJCR.942839.
[24]
LIANG Z T, XU Y, LI J F, et al. The Value of 128-Slice Spiral CT in the Clinical Diagnosis of Cerebral Vascular Stenosis in Patients with Cerebral Infarction[J]. Chin J CT MRI, 2021, 19(11):11-13. DOI: 10.3969/j.issn.1672-5131.2021.11.004.
[25]
KJØLHEDE M, HJORT N, HOMBURG S, et al. Diagnostic yield of computed tomography angiography in patients presenting with spontaneous intracerebral hemorrhage[J]. Acta Radiol, 2024, 65(7): 817-824. DOI: 10.1177/02841851241254516.
[26]
STOUT J N, SEE A P, MEADOWS J, et al. Comparing vascular morphology and hemodynamics in patients with vein of Galen malformations using intracranial 4D flow MRI[J]. AJNR Am J Neuroradiol, 2024, 45(10): 1586-1592. DOI: 10.3174/ajnr.A8353.
[27]
KOLAHI S, TAHAMTAN M, SARVARI M, et al. Diagnostic performance of TOF, 4D MRA, arterial spin-labeling, and susceptibility-weighted angiography sequences in the post-radiosurgery monitoring of brain AVMs[J]. AJNR Am J Neuroradiol, 2025, 46(1): 57-65. DOI: 10.3174/ajnr.A8420.
[28]
BRUNOZZI D, MCGUIRE L S, TURCHAN W T, et al. Brain arteriovenous malformation flow after stereotactic radiosurgery: Role of quantitative MRA[J]. Interv Neuroradiol, 2024, 30(2): 242-249. DOI: 10.1177/15910199221133174.
[29]
ZHUO Y D, CHANG J L, CHEN Y, et al. Value of contrast-enhanced MR angiography for the follow-up of treated brain arteriovenous malformations: systematic review and meta-analysis[J]. Eur Radiol, 2023, 33(10): 7139-7148. DOI: 10.1007/s00330-023-09714-w.
[30]
LIANG E, CAI J. Comparative study on the diagnostic value of MSCTA and DSA in cerebrovascular malformation[J]. Chin J Integr Med Cardio /cerebrovascular Dis, 2016, 14(19): 2318-2320. DOI: 10.3969/j.issn.1672-1349.2016.14.007.
[31]
ZHU J Y, ZHU W S, LI M H, et al. Dual-source computed tomography angiography versus time-resolved contrast-enhanced magnetic resonance angiography for diagnosis of spinal vascular malformations: a retrospective study[J/OL]. World Neurosurg, 2025, 196: 123745 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/39924106/. DOI: 10.1016/j.wneu.2025.123745.
[32]
RAYMAEKERS V, RODRÍGUEZ-HERNÁNDEZ A, PEGGE S A H, et al. Diagnostic accuracy of 4D-MRA for the detection and localization of spinal dural arteriovenous fistulas: a systematic review and meta-analysis[J/OL]. World Neurosurg, 2025, 193: 184-190 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/39481844/. DOI: 10.1016/j.wneu.2024.10.087.
[33]
WANG H Q, LÜ G T, HU H B, et al. Application Value of CTA Combined with MRA in Diagnosis and Treatment of Intracranial Aneurysms[J]. Chin J CT MRI, 2020, 18(11):17-19. DOI: 10.3969/j.issn.1672-5131.2020.11.006.
[34]
LIM J H, YOON D Y, KIM E S, et al. CT angiography, MR angiography, and their combined use for detection of unruptured intracranial aneurysms: comparison with digital subtraction angiography and 3-dimensional rotational angiography[J]. Clin Neuroradiol, 2025, 35(2): 355-362. DOI: 10.1007/s00062-024-01491-3.

PREV Analysis of MR imaging evolution and related factors of recent small subcortical infarcts with cerebral small vessel disease
NEXT Application value of susceptibility-weighted imaging for neonatal craniocerebral injury
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn