Share:
Share this content in WeChat
X
Clinical Article
Application value of susceptibility-weighted imaging for neonatal craniocerebral injury
ZHANG Siqi  LI Zhiqiang  WANG Ruirui  WEI Lijuan  WANG Biao  BAI Juan  ZHANG Yong  GUAN Hanzhou  XU Shuming 

Cite this article as: ZHANG S Q, LI Z Q, WANG R R, et al. Application value of susceptibility-weighted imaging for neonatal craniocerebral injury[J]. Chin J Magn Reson Imaging, 2025, 16(9): 34-39. DOI:10.12015/issn.1674-8034.2025.09.006.


[Abstract] Objective To evaluate the value of susceptibility weighted imaging (SWI) in the diagnosis and differential diagnosis of neonatal craniocerebral injury.Materials and Methods A retrospective collection of 900 neonates suspected of intracranial hemorrhage (ICH) after cranial ultrasound screening in Shanxi Children's Hospital was completed with conventional MRI and SWI. The chi-square test was used to compare the detection rates of conventional MRI and SWI for different hemorrhage sites. The chi-square test was used to evaluate the differences in different sites of ICH in preterm and term infants.Results (1) SWI has a higher detection rate of neonatal ICH than conventional MRI (24.0% vs. 19.8%, P < 0.05); (2) For hemorrhage in the lateral ventricles, cerebral cortex, cerebellar hemispheres, and subdural/epidural hemorrhages, SWI detects a greater number and extent of lesions than conventional MRI (P < 0.05); (3) The detection rate of hemorrhage lesions in germinal matrix and lateral compartment was higher in preterm infants than term infants, and the detection rate of hemorrhage lesions in subarachnoid space was lower than in term infants (P < 0.05).Conclusions SWI is somewhat superior to conventional MRI in detecting neonatal ICH and identifying punctate white matter lesion and microhemorrhagic lesions. Therefore, it is recommended that conventional MRI combined with SWI sequences should be used for comprehensive diagnosis in order to improve the efficacy of detecting ICH lesions and provide an imaging basis for clinical diagnosis and treatment.
[Keywords] neonate;intracranial hemorrhage;punctate white matter lesion;susceptibility-weighted imaging;magnetic resonance imaging

ZHANG Siqi1   LI Zhiqiang2   WANG Ruirui3   WEI Lijuan4   WANG Biao1   BAI Juan5   ZHANG Yong3   GUAN Hanzhou3   XU Shuming1*  

1 Department of CT, Shanxi Children's Hospital (Shanxi Maternal and Child Health Hospital), Taiyuan 030013, China

2 Department of imaging, Taiyuan Maternal and Child Health Hospital, Taiyuan 030012, China

3 Department of Intensive Care, Shanxi Children's Hospital (Shanxi Maternal and Child Health Hospital), Taiyuan 030013, China

4 Department of CT, Shanxi Coal Central Hospital, Taiyuan 030006, China

5 Department of MRI, Shanxi Cardiovascular Disease Hospital, Taiyuan 030027, China

Corresponding author: XU S M, E-mail: mrixsm2006@163.com

Conflicts of interest   None.

Received  2024-08-18
Accepted  2025-09-03
DOI: 10.12015/issn.1674-8034.2025.09.006
Cite this article as: ZHANG S Q, LI Z Q, WANG R R, et al. Application value of susceptibility-weighted imaging for neonatal craniocerebral injury[J]. Chin J Magn Reson Imaging, 2025, 16(9): 34-39. DOI:10.12015/issn.1674-8034.2025.09.006.

[1]
PUY L, PARRY-JONES A R, SANDSET E C, et al. Intracerebral haemorrhage[J/OL]. Nat Rev Dis Primers, 2023, 9(1): 14 [2024-08-18]. https://doi.org/10.1038/s41572-023-00424-7. DOI: 10.1038/s41572-023-00424-7.
[2]
ULYANKIN V E, MACHINSKY P A, VOROBIEV V G, et al. Osnovnye mekhanizmy formirovaniya vtorichnykh ishemicheskikh povrezhdenii golovnogo mozga pri cherepno-mozgovoi travme[J]. Sud Med Ekspert, 2024, 67(3): 54-59. DOI: 10.17116/sudmed20246703154.
[3]
NATARAJ P, SVOJSIK M, SURA L, et al. Comparing head ultrasounds and susceptibility-weighted imaging for the detection of low-grade hemorrha ges in preterm infants[J]. J Perinatol, 2021, 41(4): 1-7. DOI: 10.1038/s41372-020-00890-x.
[4]
FIGAJI A. An update on pediatric traumatic brain injury[J]. Childs Nerv Syst, 2023, 39(11): 3071-3081. DOI: 10.1007/s00381-023-06173-y.
[5]
CHESEBRO A G, AMARANTE E, LAO P J, et al. Automated detection of cerebral microbleeds on T2*-weighted MRI[J/OL]. Sci Rep, 2021, 11: 4004 [2024-08-18]. https://pubmed.ncbi.nlm.nih.gov/33597663. DOI: 10.1038/s41598-021-83607-0.
[6]
KOBAYASHI M, WATANABE S, MATSUDA T, et al. Diagnostic Specificity of Cerebral Magnetic Resonance Imaging for Punctate White Matter Lesion Assessment in a Preterm Sheep Fetus Model[J]. Reprod Sci, 2021, 28(4): 1175-1184. DOI: 10.1007/s43032-020-00401-5.
[7]
SUN X, NIWA T, OKAZAKI T, et al. Automatic detection of punctate white matter lesions in infants using deep learning of composite images from two cases[J/OL]. Sci Rep, 2023, 13(1): 4426 [2024-08-18]. https://doi.org/10.1038/s41598-023-31403-3. DOI: 10.1038/s41598-023-31403-3.
[8]
NIWA T, DE VRIES L S, BENDERS M J, et al. Punctate white matter lesions in infants: new insights using susceptibility-weighted imaging[J]. Neuroradiology, 2011, 53: 669-679. DOI: 10.1007/s00234-011-0872-0.
[9]
RUBIN A, WASZCZUK Ł, TRYBEK G, et al. Application of susceptibility weighted imaging (SWI) in diagnostic imaging of brain pathologies - a practical approach[J/OL]. Clin Neurol Neurosurg, 2022, 221: 107368 [2024-08-18]. https://pubmed.ncbi.nlm.nih.gov/35933968. DOI: 10.1016/j.clineuro.2022.107368.
[10]
AKER L, ABANDEH L, ABDELHADY M, et al. Susceptibility-weighted Imaging in Neuroradiology: Practical Imaging Principles, Pearls and Pitfalls[J]. Curr Probl Diagn Radiol, 2022, 51(4): 568-578. DOI: 10.1067/j.cpradiol.2021.05.001.
[11]
SADEGHI JONI S, GERAMI R, AKHONDI N, et al. Investigating the role of susceptibility weighted imaging for assessment of ischemic penumbra with respect to Venus blood flow in ischemic stroke patients[J]. Int J Physiol Pathophysiol Pharmacol, 2022, 14(3): 200-205.
[12]
KHALADKAR S M, CHANABASANAVAR V, DHIRAWANI S, et al. Susceptibility Weighted Imaging: An Effective Auxiliary Sequence That Enhances Insight Into the Imaging of Stroke[J/OL]. Cureus, 2022, 14(5): e24918 [2024-08-18]. https://pubmed.ncbi.nlm.nih.gov/35706758. DOI: 10.7759/cureus.24918.
[13]
WEERINK L B, APPELMAN A P, KLOET R W, et al. Susceptibility-weighted imaging in intracranial hemorrhage: not all bleeds are black[J/OL]. Br J Radiol, 2022: 20220304 [2024-08-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10392652. DOI: 10.1259/bjr.20220304.
[14]
KÖRNYEI B S, SZABÓ V, PERLAKI G, et al. Cerebral Microbleeds May Be Less Detectable by Susceptibility Weighted Imaging MRI From 24 to 72 Hours After Traumatic Brain Injury[J/OL]. Front Neurosci, 2021, 15: 711074 [2024-08-18]. https://pubmed.ncbi.nlm.nih.gov/34658762. DOI: 10.3389/fnins.2021.711074.
[15]
NIWA T, AIDA N, SHISHIKURA A, et al. Susceptibility-Weighted Imaging Findings of Cortical Laminar Necrosis in Pediatric Patients[J]. AJNR Am J Neuroradiol, 2008, 29: 1795-1798. DOI: 10.3174/ajnr.A1184.
[16]
CHARIDIMOU A, SMITH E E. Cardiovascular Management in Asymptomatic (Silent) Cerebral Microbleeds and Suspected Cerebral Amyloid Angiopathy[J]. Stroke, 2024, 55(4): 1101-1112. DOI: 10.1161/STROKEAHA.123.044167.
[17]
JAIN N, KUMAR S, SINGH A, et al. Blood in the Brain on Susceptibility-Weighted Imaging[J]. Indian J Radiol Imaging, 2022, 33(1): 89-97. DOI: 10.1055/s-0042-1758880.
[18]
TAY K L, LEASON S R, DAWES L C, et al. Haemorrhage and Calcification on Susceptibility-Weighted Imaging: A Quick and Reliable Qualitative Technique for Differentiating Lesions with Ambiguous Phase[J]. Clin Neuroradiol, 2022, 32(3): 705-715. DOI: 10.1007/s00062-021-01094-2.
[19]
SONG Z, PENG J, LI X, et al. Diagnostic Value of Susceptibility-Weighted Imaging Combined with Diffusion-Weighted Imaging in Early Intracerebral Hemorrhage[J/OL]. Contrast Media Mol Imaging, 2022, 2022: 8072582 [2024-08-18]. https://pubmed.ncbi.nlm.nih.gov/35845742. DOI: 10.1155/2022/8072582.
[20]
HIRUNPAT P, PANYAPING T, TAEBUNPAKUL P, et al. Susceptibility-weighted imaging is helpful in diagnosis of cerebral gnathostomiasis[J]. Neuroradiol J, 2023, 36(3): 315-318. DOI: 10.1177/19714009221132948.
[21]
NAEL K, DAGHER J C, DOWNS M E, et al. Maximum AmbiGuity Distance for Phase Imaging in Detection of Traumatic Cerebral Microbleeds: An Improvement over Current Imaging Practice[J]. AJNR Am J Neuroradiol, 2020, 41(11): 2027-2033. DOI: 10.3174/ajnr.A6774.
[22]
CAMPEAU N G, TRZASKO J D, MEYER N K, et al. Technical note: Improved differentiation of calcification from hemosiderin using paramagnetic- and diamagnetic-specific magnetic resonance susceptibility weighted imaging (p-SWI, d-SWI)[J]. Clin Imaging, 2023, 99: 47-52. DOI: 10.1016/j.clinimag.2023.04.009.
[23]
UZIANBAEVA L, YAN Y, JOSHI T, et al. Methods for Monitoring Risk of Hypoxic Damage in Fetal and Neonatal Brains: A Review[J]. Fetal Diagn Ther, 2022, 49: 1-24. DOI: 10.1159/000520987.
[24]
SHEN Y, ZHENG W, HU J, et al. Susceptibility weighted MRI pinpoints spontaneous intracerebral hemorrhage in stroke-prone spontaneously hypertensive rats[J]. Magn Reson Imaging, 2022, 93: 135-144. DOI: 10.1016/j.mri.2022.08.009.
[25]
NOH D, CHOI S, CHOI H, et al. Evaluating traumatic brain injury using conventional magnetic resonance imaging and susceptibility-weighted imaging in dogs[J/OL]. J Vet Sci, 2019, 20: e10 [2024-08-18]. https://pubmed.ncbi.nlm.nih.gov/30944533. DOI: 10.4142/jvs.2019.20.e10.
[26]
CHAWLA S, CHOCK V Y, LAKSHMINRUSIMHA S. Intraventricular hemorrhage and white matter injury: is persistent cerebral desaturation a missing link?[J]. Pediatr Res, 2021, 89(4): 727-729. DOI: 10.1038/s41390-020-01294-5.
[27]
MALOVA M, MORELLI E, CARDIELLO V, et al. Nosological Differences in the Nature of Punctate White Matter Lesions in Preterm Infants[J/OL]. Front Neurol, 2021, 12: 657461 [2024-08-18]. https://pubmed.ncbi.nlm.nih.gov/33995255. DOI: 10.3389/fneur.2021.657461.
[28]
IMAI K, HARA H, SAWADA T, et al. Comparison of the Clinical Characteristics of Infants with Punctate White Matter Lesions and/or Cystic Lesions[J]. Neuropediatrics, 2023, 54(1): 6-13. DOI: 10.1055/s-0042-1759789.
[29]
ARNOLD S A, PLATT S R, GENDRON K P, et al. Imaging Ischemic and Hemorrhagic Disease of the Brain in Dogs[J/OL]. Front Vet Sci, 2020, 7: 279 [2024-08-18]. https://pubmed.ncbi.nlm.nih.gov/32528985. DOI: 10.3389/fvets.2020.00279.
[30]
TORTORA D, SEVERINO M, SEDLACIK J, et al. Quantitative susceptibility map analysis in preterm neonates with germinal matrix-intraventricular hemorrhage[J]. J Magn Reson Imaging, 2018, 48: 1199-1207. DOI: 10.1002/jmri.26163.
[31]
YUAN W, TAMM L, HARPSTER K, et al. Effects of intraventricular hemorrhage on white matter microstructural changes at term and early developmental outcomes in infants born very preterm[J]. Neuroradiology, 2021, 63: 1549-1561. DOI: 10.1007/s00234-021-02708-9.
[32]
IMAI K, DE VRIES L S, ALDERLIESTEN T, et al. MRI Changes in the Thalamus and Basal Ganglia of Full-Term Neonates with Perinatal Asphyxia[J]. Neonatology, 2018, 114(3): 253-260. DOI: 10.1159/000489159.

PREV Diagnostic value of magnetic resonance angiography combined with CT angiography in the detection of cerebral vascular malformations in children
NEXT The feasibility of fluid-suppressed amide proton transfer-weighted imaging in suppressing the fluid components of post-treatment gliomas
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn