Share:
Share this content in WeChat
X
Clinical Article
Biventricular strain in dilated cardiomyopathy: A comparative study between heart failure with mildly reduced ejection fraction and heart failure with preserved ejection fraction
ZHANG Linxin  QI Haicheng  CHEN Ying  DUAN Lian  YAN Jun  XING Yan 

Cite this article as: ZHANG L X, QI H C, CHEN Y, et al. Biventricular strain in dilated cardiomyopathy: A comparative study between heart failure with mildly reduced ejection fraction and heart failure with preserved ejection fraction[J]. Chin J Magn Reson Imaging, 2025, 16(9): 66-73. DOI:10.12015/issn.1674-8034.2025.09.011.


[Abstract] Objective To quantitatively assess correlations and differences in biventricular function between patients with heart failure with mildly reduced ejection fraction (HFmrEF) and heart failure with preserved ejection fraction (HFpEF) in the context of dilated cardiomyopathy (DCM) using cardiovascular magnetic resonance feature-tracking (CMR-FT), and to evaluate the predictive value of biventricular myocardial strain parameters for HFmrEF.Materials and Methods Clinical and imaging data of patients diagnosed with heart failure and previously confirmed DCM were retrospectively collected from the First Affiliated Hospital of Xinjiang Medical University between January 2021 and June 2024. Conventional cardiac magnetic resonance (CMR) parameters and myocardial strain parameters were obtained using the CVI42 software. Based on heart failure characteristics, patients were divided into HFmrEF and HFpEF groups. Baseline clinical data, basic CMR parameters, and global/segmental myocardial strain parameters were compared between the two groups. Elastic-net regularized regression and multivariate logistic regression were used to identify independent factors associated with HFmrEF in DCM patients and to construct receiver operating characteristic (ROC) curves.Results A total of 67 patients were enrolled, including 28 in the HFpEF group and 39 in the HFmrEF group. Significant differences were observed between the two groups in N-terminal pro-B-type natriuretic peptide (NT-proBNP), high-sensitivity troponin T (hs-TnT), and myoglobin levels (all P < 0.05). Compared with the HFpEF group, the HFmrEF group showed significantly reduced biventricular stroke volume index, left ventricular cardiac output, and cardiac index (all P < 0.05); significantly increased biventricular end-diastolic/end-systolic volume indices and myocardial mass index (all P < 0.05); and impaired global and segmental myocardial strain (all P < 0.05 except for LV apical longitudinal strain). Multivariate logistic regression analysis identified right ventricular stroke volume index (OR = 0.863, P = 0.008), left ventricular mid longitudinal strain (OR = 1.406, P = 0.004), and right ventricular mid longitudinal strain (OR = 1.110, P = 0.025) as independent predictors of HFmrEF. The area under the ROC curve of the three-variable combined model was the largest, at 0.896 (95% CI: 0.823 to 0.968).Conclusions CMR-FT can accurately characterize myocardial strain in DCM patients with HFmrEF and HFpEF. Right ventricular stroke volume index, left ventricular mid longitudinal strain, and right ventricular mid longitudinal strain serve as independent predictors of HFmrEF in DCM patients, providing important assessment value for this patient subgroup.
[Keywords] cardiovascular magnetic resonance;dilated cardiomyopathy;heart failure;feature-tracking;myocardial strain;ejection fraction

ZHANG Linxin1   QI Haicheng1   CHEN Ying1   DUAN Lian2   YAN Jun2   XING Yan1*  

1 Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China

2 Imaging Center, Xinjiang Cardiovascular and Cerebrovascular Hospital, Urumqi 830011, China

Corresponding author: XING Y, E-mail: xingyanzwb@sina.com

Conflicts of interest   None.

Received  2025-06-11
Accepted  2025-09-10
DOI: 10.12015/issn.1674-8034.2025.09.011
Cite this article as: ZHANG L X, QI H C, CHEN Y, et al. Biventricular strain in dilated cardiomyopathy: A comparative study between heart failure with mildly reduced ejection fraction and heart failure with preserved ejection fraction[J]. Chin J Magn Reson Imaging, 2025, 16(9): 66-73. DOI:10.12015/issn.1674-8034.2025.09.011.

[1]
Electrophysiology and Cardiac Function Branch of Chinese Society of Geriatrics, Alliance of China Heart Failure Centers Expert Committee, Editorial Board of Chinese Journal of General Practitioners of Chinese Medical Association. Chinese expert consensus on early screening and primary prevention of heart failure (2024)[J]. Chinese Journal of General Practitioners, 2024, 23 (1): 7-18. DOI: 10.3760/cma.j.cn114798-20230806-00043.
[2]
WANG H, LI Y Y, CHAI K, et al. Mortality in patients admitted to hospital with heart failure in China: a nationwide Cardiovascular Association Database-Heart Failure Centre Registry cohort study[J/OL]. Lancet Glob Health, 2024, 12(4): e611-e622 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/38485428/. DOI: 10.1016/S2214-109X(23)00605-8.
[3]
Chinese Society of Cardiology, Chinese Medical Association, Chinese College of Cardiovascular Physician, Chinese Heart Failure Association of Chinese Medical Doctor Association, Editorial Board of Chinese Journal of Cardiology. Chinese guidelines for the diagnosis and treatment of heart failure 2024[J]. Chinese Journal of Cardiology, 2024, 52(3): 235-275. DOI: 10.3760/cma.j.cn112148-20231101-00405.
[4]
LIU M B, HE X Y, YANG X H, et al. Interpretation of report on cardiovascular health and diseases in China 2023[J]. Chin Gen Pract, 2025, 28(1): 20-38. DOI: 10.12114/j.issn.1007-9572.2024.0293.
[5]
MANCA P, STOLFO D, MERLO M, et al. Transient versus persistent improved ejection fraction in non-ischaemic dilated cardiomyopathy[J]. Eur J Heart Fail, 2022, 24(7): 1171-1179. DOI: 10.1002/ejhf.2512.
[6]
KØBER L, THUNE J J, NIELSEN J C, et al. Defibrillator implantation in patients with nonischemic systolic heart failure[J]. N Engl J Med, 2016, 375(13): 1221-1230. DOI: 10.1056/NEJMoa1608029.
[7]
VANCHERI F, LONGO G, HENEIN M Y. Left ventricular ejection fraction: clinical, pathophysiological, and technical limitations[J/OL]. Front Cardiovasc Med, 2024, 11: 1340708 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/38385136/. DOI: 10.3389/fcvm.2024.1340708.
[8]
PAULUS W J. Border disputes between heart failure phenotypes[J]. Circulation, 2022, 145(18): 1374-1376. DOI: 10.1161/CIRCULATIONAHA.121.058516.
[9]
ZHOU Q, LI P X, ZHAO H L, et al. Heart failure with mid-range ejection fraction: a distinctive subtype or a transitional stage?[J/OL]. Front Cardiovasc Med, 2021, 8: 678121 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/34113665/. DOI: 10.3389/fcvm.2021.678121.
[10]
SERAPHIM A, KNOTT K D, AUGUSTO J, et al. Quantitative cardiac MRI[J]. J Magn Reson Imaging, 2020, 51(3): 693-711. DOI: 10.1002/jmri.26789.
[11]
ZHANG L X, CHEN Y, QI H C, et al. Research progress in the application of cardiac magnetic resonance imaging in dilated cardiomyopathy[J]. Chin J Magn Reson Imag, 2025, 16(3): 150-155. DOI: 10.12015/issn.1674-8034.2025.03.025.
[12]
WU Y S, BAO M Y, ZHANG L X, et al. Advances in research on the application of cardiac magnetic resonance imaging in the subclinical stage of diabetic cardiomyopathy[J]. Chin J Magn Reson Imag, 2025, 16(4): 168-173. DOI: 10.12015/issn.1674-8034.2025.04.027.
[13]
TANG H S, KWAN C T, HE J L, et al. Prognostic utility of cardiac MRI myocardial strain parameters in patients with ischemic and nonischemic dilated cardiomyopathy: a multicenter study[J]. AJR Am J Roentgenol, 2023, 220(4): 524-538. DOI: 10.2214/AJR.22.28415.
[14]
LIU S L, LI Y L, LIAN J X, et al. Prognostic significance of biventricular and biatrial strain in dilated cardiomyopathy: strain analysis derived from cardiovascular magnetic resonance[J/OL]. Rev Cardiovasc Med, 2023, 24(12): 347 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/39077074/. DOI: 10.31083/j.rcm2412347.
[15]
KOROSOGLOU G, SAGRIS M, ANDRÉ F, et al. Systematic review and meta-analysis for the value of cardiac magnetic resonance strain to predict cardiac outcomes[J/OL]. Sci Rep, 2024, 14(1): 1094 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/38212323/. DOI: 10.1038/s41598-023-50835-5.
[16]
KAMMERLANDER A A, KRAIGER J A, NITSCHE C, et al. Global longitudinal strain by CMR feature tracking is associated with outcome in HFPEF[J]. JACC Cardiovasc Imaging, 2019, 12(8Pt 1): 1585-1587. DOI: 10.1016/j.jcmg.2019.02.016.
[17]
WU Y, ZHAO F L, ZHANG J Q, et al. Research progress of heart failure with mid-range ejection fraction[J]. Chin J Cardiovasc Rehabil Med, 2023, 32(3): 250-253. DOI: 10.3969/j.issn.1008-0074.2023.03.08.
[18]
VIETHEER J, LEHMANN L, UNBEHAUN C, et al. CMR-derived myocardial strain analysis differentiates ischemic and dilated cardiomyopathy-a propensity score-matched study[J]. Int J Cardiovasc Imaging, 2022, 38(4): 863-872. DOI: 10.1007/s10554-021-02469-9.
[19]
LI S, WANG Y N, YANG W J, et al. Cardiac MRI risk stratification for dilated cardiomyopathy with left ventricular ejection fraction of 35% or higher[J/OL]. Radiology, 2023, 306(3): e213059 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/36318031/. DOI: 10.1148/radiol.213059.
[20]
ZHANG S W, ZHOU Y F, HAN S G, et al. The diagnostic and prognostic value of cardiac magnetic resonance strain analysis in heart failure with preserved ejection fraction[J/OL]. Contrast Media Mol Imaging, 2023, 2023: 5996741 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/36793498/. DOI: 10.1155/2023/5996741.
[21]
LIAO Y H. Chinese guidelines for diagnosis and treatment of dilated cardiomayopathy: innovation and transformation[J]. J Clin Cardiol, 2018, 34(5): 435-436. DOI: 10.13201/j.issn.1001-1439.2018.05.002.
[22]
MCDONAGH T A, METRA M, ADAMO M, et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure[J]. Eur Heart J, 2023, 44(37): 3627-3639. DOI: 10.1093/eurheartj/ehad195.
[23]
HASHEMI D, MOTZKUS L, BLUM M, et al. Myocardial deformation assessed among heart failure entities by cardiovascular magnetic resonance imaging[J]. ESC Heart Fail, 2021, 8(2): 890-897. DOI: 10.1002/ehf2.13193.
[24]
ALVES-JR J L, COSTA E L V, HOETTE S, et al. Right ventricular-pulmonary arterial coupling in schistosomiasis associated pulmonary arterial hypertension[J]. J Heart Lung Transplant, 2025, 44(7): 1024-1032. DOI: 10.1016/j.healun.2025.01.018.
[25]
LI P X, ZHAO H L, ZHANG J Y, et al. Similarities and differences between HFmrEF and HFpEF[J/OL]. Front Cardiovasc Med, 2021, 8: 678614 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/34616777/. DOI: 10.3389/fcvm.2021.678614.
[26]
LI P J, SUN A Q, GUO C X, et al. Effects of orientation of myocardial fibers on the contractility of left ventricle[J/OL]. J Mech Behav Biomed Mater, 2025, 168: 107025 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/40319616/. DOI: 10.1016/j.jmbbm.2025.107025.
[27]
FERNANDEZ-TERAN M A, HURLE J M. Myocardial fiber architecture of the human heart ventricles[J]. Anat Rec, 1982, 204(2): 137-147. DOI: 10.1002/ar.1092040207.
[28]
OZKAN M, TATAR S, TOKGÖZ O S. Diastolic global longitudinal strain and acute ischemic stroke: a hidden relationship?[J/OL]. BMC Cardiovasc Disord, 2025, 25(1): 383 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/40389876/. DOI: 10.1186/s12872-025-04841-2.
[29]
MINAMISAWA M, INCIARDI R M, CLAGGETT B, et al. Clinical implications of subclinical left ventricular dysfunction in heart failure with preserved ejection fraction: The PARAGON-HF study[J]. Eur J Heart Fail, 2024, 26(4): 871-881. DOI: 10.1002/ejhf.3167.
[30]
KAMMERLANDER A A, DONÀ C, NITSCHE C, et al. Feature tracking of global longitudinal strain by using cardiovascular MRI improves risk stratification in heart failure with preserved ejection fraction[J]. Radiology, 2020, 296(2): 290-298. DOI: 10.1148/radiol.2020200195.
[31]
SMERUP M, NIELSEN E, AGGER P, et al. The three-dimensional arrangement of the myocytes aggregated together within the mammalian ventricular myocardium[J]. Anat Rec, 2009, 292(1): 1-11. DOI: 10.1002/ar.20798.
[32]
CHANG H B, LIU Q H, ZIMMERMAN J F, et al. Recreating the heart's helical structure-function relationship with focused rotary jet spinning[J]. Science, 2022, 377(6602): 180-185. DOI: 10.1126/science.abl6395.
[33]
YU Y H, YU S S, TANG X P, et al. Evaluation of left ventricular strain in patients with dilated cardiomyopathy[J]. J Int Med Res, 2017, 45(6): 2092-2100. DOI: 10.1177/0300060517712164.
[34]
FANG H, WANG J, SHI R, et al. Biventricular dysfunction and ventricular interdependence in patients with pulmonary hypertension: a 3.0-T cardiac MRI feature tracking study[J]. J Magn Reson Imaging, 2024, 60(1): 350-362. DOI: 10.1002/jmri.29044.
[35]
BO K R, ZHOU Z, SUN Z H, et al. Prognostic value of cardiac magnetic resonance in assessing right ventricular strain in cardiovascular disease: a systematic review and meta-analysis[J/OL]. Rev Cardiovasc Med, 2022, 23(12): 406 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/39076664/. DOI: 10.31083/j.rcm2312406.
[36]
TADIC M, KERSTEN J, NITA N, et al. The prognostic importance of right ventricular longitudinal strain in patients with cardiomyopathies, connective tissue diseases, coronary artery disease, and congenital heart diseases[J/OL]. Diagnostics (Basel), 2021, 11(6): 954 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/34073460/. DOI: 10.3390/diagnostics11060954.
[37]
PARK A C, MANN D L. The pathobiology of myocardial recovery and remission: from animal models to clinical observations in heart failure patients[J]. Methodist Debakey Cardiovasc J, 2024, 20(4): 16-30. DOI: 10.14797/mdcvj.1389.
[38]
ZHOU Y Q, XU Y W, LI Y J, et al. Late gadolinium-enhanced cardiovascular magnetic resonance for predicting left ventricular reverse remodeling in dilated cardiomyopathy: a comprehensive review and meta-analysis[J/OL]. J Cardiovasc Magn Reson, 2025, 27(1): 101860 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/39955068/. DOI: 10.1016/j.jocmr.2025.101860.

PREV Application value of deep learning-based accelerated T1WI and T2WI sequences in head and neck tumors
NEXT Value of non-contrast cardiac magnetic resonance T1ρ mapping in assessing myocardial fibrosis in hypertrophic and dilated cardiomyopathy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn