Share:
Share this content in WeChat
X
Clinical Article
Value of non-contrast cardiac magnetic resonance T1ρ mapping in assessing myocardial fibrosis in hypertrophic and dilated cardiomyopathy
XU Jingjing  ZHANG Nan  DU Fan  LU Hongfei  WANG Shiya  HUA Yiying  YUE Xiuzheng  ZENG Mengsu  JIN Hang 

Cite this article as: XU J J, ZHANG N, DU F, et al. Value of non-contrast cardiac magnetic resonance T1ρ mapping in assessing myocardial fibrosis in hypertrophic and dilated cardiomyopathy[J]. Chin J Magn Reson Imaging, 2025, 16(9): 74-81. DOI:10.12015/issn.1674-8034.2025.09.012.


[Abstract] Objective To explore the value of non-contrast cardiac magnetic resonance (CMR) T1ρ mapping in evaluating myocardial fibrosis in patients with hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM).Materials and Methods CMR images and clinical data of 63 patients clinically diagnosed with HCM and DCM in Zhongshan Hospital Affiliated to Fudan University from July 2023 to December 2023 were prospectively included. According to the manifestations of late gadolinium enhancement (LGE), the patients were divided into three groups: LGE (+), LGE (+-) and LGE (-) groups, they represent patients with obvious LGE areas, patients with suspicious LGE areas, and patients with no detected LGE areas in any myocardial segment respectively. At the same time, 20 healthy volunteers were included as the control group. The general information of the participants and the imaging data of CMR examinations were collected. The cardiac function indexes, native T1 and T1ρ values were compared between the patient group and the control group. Depending on whether the continuous variables conformed to normality, parametric tests (independent samples t-test) and non-parametric tests (Mann-Whitney test) were used for comparison respectively. In LGE (+) group, paired t-test or paired rank sum test was used to compare the non-LGE regions and LGE-positive regions of their own myocardium.In the patient and control groups, one-way ANOVA was used, and if there is a statistical difference (P < 0.05), post-hoc tests (such as Dunnett) were conducted for pairwise comparisons, or Kruskal-Wallis test was used, followed by Dunn's test to correct for multiple comparisons.Results The heart rate of HCM patients was lower than that of the control group (P = 0.021). Compared with the control group, the left ventricular cardiac output of HCM and DCM patients was lower (P = 0.006, P < 0.001), while the left ventricular mass increased (all P < 0.001). In the LGE (+) group, the T1ρ and native T1 values in the LGE-negative regions were (55 ± 3) ms and (1046 ± 30) ms (compared with the control group, P = 0.009, P = 0.014), respectively. The myocardial T1ρ and native T1 values in the LGE-positive regions of both HCM patients and DCM patients were significantly increased, and there were statistically significant differences in the T1ρ and native T1 values between these regions and the non-LGE regions of their own myocardium as well as the myocardium of the control group (all P < 0.001). In the LGE (+-) group, the overall myocardial T1ρ and native T1 values were (57 ± 3) ms and (1070 ± 40) ms (compared with the control group, P = 0.032, P = 0.007), respectively. Then, for the patients in the LGE (-) group, the overall myocardial native T1 value was (1040 ± 30) ms , and the T1ρ value was (57 ± 2) ms (compared with the control group, P = 0.667, P < 0.001). The measurement of myocardial T1ρ and T1 values showed good intra-observer (ICC = 0.93/0.99, all P < 0.001) and inter-observer (ICC = 0.88/0.98, all P < 0.001) agreement.Conclusions The T1ρ mapping technique is a reliable tool for quantitatively detecting myocardial fibrosis. It can be used for non-contrast evaluation of myocardial fibrosis in HCM and DCM. It demonstrates particular utility in patients with diffuse fibrosis and outperforms native T1 mapping in evaluating early-stage lesions within LGE-negative myocardial regions.
[Keywords] magnetic resonance imaging;cardiac magnetic resonance;T1ρ mapping;hypertrophic cardiomyopathy;dilated cardiomyopathy;myocardial fibrosis

XU Jingjing1, 2   ZHANG Nan2   DU Fan2   LU Hongfei2   WANG Shiya2   HUA Yiying2   YUE Xiuzheng3   ZENG Mengsu2   JIN Hang1, 2*  

1 Shanghai Institute of Medical Imaging, Shanghai 200032, China

2 Department of Radiology, Zhongshan Hospital of Fudan University, Shanghai 200032, China

3 Philips Health Technology (China) Co., Ltd, Beijing 100600, China

Corresponding author: JIN H, E-mail: jin.hang@zs-hospital.sh.cn

Conflicts of interest   None.

Received  2025-04-28
Accepted  2025-08-28
DOI: 10.12015/issn.1674-8034.2025.09.012
Cite this article as: XU J J, ZHANG N, DU F, et al. Value of non-contrast cardiac magnetic resonance T1ρ mapping in assessing myocardial fibrosis in hypertrophic and dilated cardiomyopathy[J]. Chin J Magn Reson Imaging, 2025, 16(9): 74-81. DOI:10.12015/issn.1674-8034.2025.09.012.

[1]
HAMMERSLEY D J, ZEGARD A, ANDROULAKIS E, et al. Arrhythmic risk stratification by cardiovascular magnetic resonance imaging in patients with nonischemic cardiomyopathy[J]. J Am Coll Cardiol, 2024, 84(15): 1407-1420. DOI: 10.1016/j.jacc.2024.06.046.
[2]
MUSER D, NUCIFORA G, CASTRO S A, et al. Myocardial substrate characterization by CMR T1 mapping in patients with NICM and No LGE undergoing catheter ablation of VT[J]. JACC Clin Electrophysiol, 2021, 7(7): 831-840. DOI: 10.1016/j.jacep.2020.10.002.
[3]
EICHHORN C, KOECKERLING D, REDDY R K, et al. Risk stratification in nonischemic dilated cardiomyopathy using CMR imaging: a systematic review and meta-analysis[J]. JAMA, 2024, 332(18): 1535-1550. DOI: 10.1001/jama.2024.13946.
[4]
ZHAO K K, ZHU Y J, CHEN X Y, et al. Machine learning in hypertrophic cardiomyopathy: nonlinear model from clinical and CMR features predicting cardiovascular events[J]. JACC Cardiovasc Imaging, 2024, 17(8): 880-893. DOI: 10.1016/j.jcmg.2024.04.013.
[5]
DI MARCO A, BROWN P, MATEUS G, et al. Late gadolinium enhancement and the risk of ventricular arrhythmias and sudden death in NYHA class I patients with non-ischaemic cardiomyopathy[J]. Eur J Heart Fail, 2023, 25(5): 740-750. DOI: 10.1002/ejhf.2793.
[6]
YU X H, CHEN J X, FANG B, et al. Cardiac LGE MRI segmentation with cross-modality image augmentation and improved U-net[J]. IEEE J Biomed Health Inform, 2023, 27(2): 588-597. DOI: 10.1109/JBHI.2021.3139591.
[7]
LEINER T, BOGAERT J, FRIEDRICH M G, et al. SCMR Position Paper (2020) on clinical indications for cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 76 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/33161900/. DOI: 10.1186/s12968-020-00682-4.
[8]
RAJIAH P S, FRANÇOIS C J, LEINER T. Cardiac MRI: state of the art[J/OL]. Radiology, 2023, 307(3): e223008 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/37039684/. DOI: 10.1148/radiol.223008.
[9]
YU Y F, CHEN Y Y, ZHAO S H, et al. Role of free-breathing motion-corrected late gadolinium enhancement technique for image quality assessment and LGE quantification[J/OL]. Eur J Radiol, 2021, 135: 109510 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/33401112/. DOI: 10.1016/j.ejrad.2020.109510.
[10]
DONG Z X, YIN G, YANG K, et al. Endogenous assessment of late gadolinium enhancement grey zone in patients with non-ischaemic cardiomyopathy with T1ρ and native T1 mapping[J]. Eur Heart J Cardiovasc Imaging, 2023, 24(4): 492-502. DOI: 10.1093/ehjci/jeac128.
[11]
SALVADOR D B, GAMBA M R, GONZALEZ-JARAMILLO N, et al. Diabetes and myocardial fibrosis: a systematic review and meta-analysis[J]. JACC Cardiovasc Imaging, 2022, 15(5): 796-808. DOI: 10.1016/j.jcmg.2021.12.008.
[12]
BUSTIN A, WITSCHEY W R T, VAN HEESWIJK R B, et al. Magnetic resonance myocardial T1ρ mapping: technical overview, challenges, emerging developments, and clinical applications[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 34 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/37331930/. DOI: 10.1186/s12968-023-00940-1.
[13]
BUSTIN A, PINEAU X, SRIDI S, et al. Assessment of myocardial injuries in ischaemic and non-ischaemic cardiomyopathies using magnetic resonance T1-rho mapping[J]. Eur Heart J Cardiovasc Imaging, 2024, 25(4): 548-557. DOI: 10.1093/ehjci/jead319.
[14]
BUSTIN A, TOUPIN S, SRIDI S, et al. Endogenous assessment of myocardial injury with single-shot model-based non-rigid motion-corrected T1 rho mapping[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 119 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/34670572/. DOI: 10.1186/s12968-021-00781-w.
[15]
OMMEN S R, MITAL S, BURKE M A, et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines[J/OL]. Circulation, 2020, 142(25): e558-e631 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/33215931/. DOI: 10.1161/CIR.0000000000000937.
[16]
PINTO Y M, ELLIOTT P M, ARBUSTINI E, et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases[J]. Eur Heart J, 2016, 37(23): 1850-1858. DOI: 10.1093/eurheartj/ehv727.
[17]
SCHULZ-MENGER J, BLUEMKE D A, BREMERICH J, et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance - 2020 update: Society for Cardiovascular Magnetic Resonance (SCMR): Board of Trustees Task Force on Standardized Post-Processing[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 19 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/32160925/. DOI: 10.1186/s12968-020-00610-6.
[18]
GRÖSCHEL J, TRAUZEDDEL R F, MÜLLER M, et al. Multi-site comparison of parametric T1 and T2 mapping: healthy travelling volunteers in the Berlin research network for cardiovascular magnetic resonance (BER-CMR)[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 47 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/37574535/. DOI: 10.1186/s12968-023-00954-9.
[19]
ZANGE L, MUEHLBERG F, BLASZCZYK E, et al. Quantification in cardiovascular magnetic resonance: agreement of software from three different vendors on assessment of left ventricular function, 2D flow and parametric mapping[J/OL]. J Cardiovasc Magn Reson, 2019, 21(1): 12 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/30786898/. DOI: 10.1186/s12968-019-0522-y.
[20]
HARRIGAN C J, PETERS D C, GIBSON C M, et al. Hypertrophic cardiomyopathy: quantification of late gadolinium enhancement with contrast-enhanced cardiovascular MR imaging[J]. Radiology, 2011, 258(1): 128-133. DOI: 10.1148/radiol.10090526.
[21]
GAO P, YEE R, GULA L, et al. Prediction of arrhythmic events in ischemic and dilated cardiomyopathy patients referred for implantable cardiac defibrillator: evaluation of multiple scar quantification measures for late gadolinium enhancement magnetic resonance imaging[J]. Circ Cardiovasc Imaging, 2012, 5(4): 448-456. DOI: 10.1161/CIRCIMAGING.111.971549.
[22]
ZHOU Z, NGUYEN C, CHEN Y, et al. Optimized CEST cardiovascular magnetic resonance for assessment of metabolic activity in the heart[J/OL]. J Cardiovasc Magn Reson, 2017, 19(1): 95 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/29191206/. DOI: 10.1186/s12968-017-0411-1.
[23]
REINSTADLER S J, STIERMAIER T, LIEBETRAU J, et al. Prognostic significance of remote myocardium alterations assessed by quantitative noncontrast T1 mapping in ST-segment elevation myocardial infarction[J]. JACC Cardiovasc Imaging, 2018, 11(3): 411-419. DOI: 10.1016/j.jcmg.2017.03.015.
[24]
LIANG K, BISACCIA G, LEO I, et al. CMR reclassifies the majority of patients with suspected MINOCA and non MINOCA[J]. Eur Heart J Cardiovasc Imaging, 2023, 25(1): 8-15. DOI: 10.1093/ehjci/jead182.
[25]
PODLESNIKAR T, PIZARRO G, FERNÁNDEZ-JIMÉNEZ R, et al. Left ventricular functional recovery of infarcted and remote myocardium after ST-segment elevation myocardial infarction (METOCARD-CNIC randomized clinical trial substudy)[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 44 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/32522198/. DOI: 10.1186/s12968-020-00638-8.
[26]
KAWARA T, DERKSEN R, DE GROOT J R, et al. Activation delay after premature stimulation in chronically diseased human myocardium relates to the architecture of interstitial fibrosis[J]. Circulation, 2001, 104(25): 3069-3075. DOI: 10.1161/hc5001.100833.
[27]
ROBINSON A A, CHOW K, SALERNO M. Myocardial T1 and ECV measurement: underlying concepts and technical considerations[J]. JACC Cardiovasc Imaging, 2019, 12(11Pt 2): 2332-2344. DOI: 10.1016/j.jcmg.2019.06.031.
[28]
VAN OORSCHOT J W M, GÜÇLÜ F, JONG S D, et al. Endogenous assessment of diffuse myocardial fibrosis in patients with T1ρ-mapping[J]. J Magn Reson Imaging, 2017, 45(1): 132-138. DOI: 10.1002/jmri.25340.
[29]
WANG L, YUAN J, ZHANG S J, et al. Myocardial T1 rho mapping of patients with end-stage renal disease and its comparison with T1 mapping and T2 mapping: a feasibility and reproducibility study[J]. J Magn Reson Imaging, 2016, 44(3): 723-731. DOI: 10.1002/jmri.25188.
[30]
LAJINESS J D, CONWAY S J. The dynamic role of cardiac fibroblasts in development and disease[J]. J Cardiovasc Transl Res, 2012, 5(6): 739-748. DOI: 10.1007/s12265-012-9394-3.
[31]
HABIB M, ADLER A, FARDFINI K, et al. Progression of myocardial fibrosis in hypertrophic cardiomyopathy: a cardiac magnetic resonance study[J]. JACC Cardiovasc Imaging, 2021, 14(5): 947-958. DOI: 10.1016/j.jcmg.2020.09.037.
[32]
ZHOU D, ZHU L Y, LI S, et al. Prognosis and risk stratification in dilated cardiomyopathy with LVEF≤35%: cardiac MRI insights for better outcomes[J/OL]. Circ Cardiovasc Imaging, 2025, 18(3): e017246 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/40100943/. DOI: 10.1161/CIRCIMAGING.124.017246.
[33]
UNGER A, GAROT J, TOUPIN S, et al. Prognostic value of cardiac MRI late gadolinium enhancement granularity in participants with ischemic cardiomyopathy[J/OL]. Radiology, 2025, 314(1): e240806 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/39772797/. DOI: 10.1148/radiol.240806.

PREV Biventricular strain in dilated cardiomyopathy: A comparative study between heart failure with mildly reduced ejection fraction and heart failure with preserved ejection fraction
NEXT Application of cardiac magnetic resonance tissue tracking and T1 mapping technology in the assessment of diabetic myocardial injury
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn