Share:
Share this content in WeChat
X
Clinical Article
Application of cardiac magnetic resonance tissue tracking and T1 mapping technology in the assessment of diabetic myocardial injury
PANG Yanqiu  WAN Na  GUO Rui  DENG Defeng  ZHOU Hao  ZHANG Kai  LAN Fang  MA Jing 

Cite this article as: PANG Y Q, WAN N, GUO R, et al. Application of cardiac magnetic resonance tissue tracking and T1 mapping technology in the assessment of diabetic myocardial injury[J]. Chin J Magn Reson Imaging, 2025, 16(9): 82-89. DOI:10.12015/issn.1674-8034.2025.09.013.


[Abstract] Objective To explore the application value of cardiac magnetic resonance tissue tracing (CMR-TT) and T1 mapping technology in the assessment of myocardial injury in patients with type 2 diabetes mellitus (T2DM).Materials and Methods A total of 64 patients with T2DM and 32 healthy controls (HC) who underwent cardiac magnetic resonance examination in our hospital from December 2023 to April 2025 were prospectively collected. All cardiac magnetic resonance image data were imported into special software for analysis, and the myocardial strain parameters, biventricular function parameters and left ventricular T1 mapping parameters were obtained, and the above parameters were compared between the two groups by t-test, Mann-Whitney U test and chi-square test, and the association between myocardial structure, function and myocardial strain was analyzed by Pearson and Spearman correlation.Results In the T2DM group, the left ventricular myocardial mass index (LVMI) and left ventricular remodeling index (LVRI) were increased (both P < 0.001), the global longitudinal peak strain in the left ventricle (LV GLS) and the global longitudinal strain of the right ventricle decreased (both P<0.05) and the absolute values of peak systolic strain rate of the left ventricle (LV PSSR), longitudinal LV PSSR and left ventricular peak strain rate (LV PDSR) in the T2DM group were decreased (all P < 0.019).The storage strain and cathete strain of the left atrium/right attrium (LA/RA) were decreased in patients with T2DM (both P < 0.001). The extracellular volume (ECV) of T2DM patients was higher than that of HC group (P < 0.001).Biventricular ejection fraction, end-systolic volume index were correlated with biventricular strain function (all P < 0.003). LVMI is correlated with the Global radial strain of the left ventricle (LV GRS), global circumferential strain of the left ventricle (LV GCS), LV GLS, circumferential LV PSSR, longitudinal LV PSSR, radial LV PDSR, circumferential LV PDSR, Longitudinal LV PDSR(all P < 0.021).The left ventricular end-diastolic volume index was correlated with LV GCS, LV GLS, circumferential LV PSSR, longitudinal LV PSSR, and circumferential LV PDSR (all P < 0.044). The right ventricular end-diastolic volume index was correlated with the global circumferential strain of the right ventricle (r = 0.331, P = 0.007). LVRI was correlated with LV GLS and longitudinal LV PDSR (both P < 0.01), and weakly correlated with radial LV PSSR (r = 0.266, P = 0.034).Conclusions Compared with the control group, the whole heart myocardial strain of T2DM patients is reduced, and the ECV value is higher. Biventricular myocardial structure, function and myocardial strain are interrelated. CMR-TT and T1 mapping techniques can effectively detect diabetic myocardial injury.
[Keywords] diabetes;diabetic cardiomyopathy;magnetic resonance imaging;cardiac magnetic resonance;tissue tracing;T1 mapping

PANG Yanqiu   WAN Na   GUO Rui   DENG Defeng   ZHOU Hao   ZHANG Kai   LAN Fang   MA Jing*  

Department of Radiology, Second Affiliated Hospital of Shihezi University School of Medicine/Xinjiang Production and Construction Corps Hospital, Urumqi 830000, China

Corresponding author: MA J, E-mail: missingshz@163.com

Conflicts of interest   None.

Received  2025-06-13
Accepted  2025-08-22
DOI: 10.12015/issn.1674-8034.2025.09.013
Cite this article as: PANG Y Q, WAN N, GUO R, et al. Application of cardiac magnetic resonance tissue tracking and T1 mapping technology in the assessment of diabetic myocardial injury[J]. Chin J Magn Reson Imaging, 2025, 16(9): 82-89. DOI:10.12015/issn.1674-8034.2025.09.013.

[1]
NAKAMURA K, MIYOSHI T, YOSHIDA M, et al. Pathophysiology and treatment of diabetic cardiomyopathy and heart failure in patients with diabetes mellitus[J/OL]. Int J Mol Sci, 2022, 23(7): 3587 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/35408946/. DOI: 10.3390/ijms23073587.
[2]
TADIC M, CUSPIDI C, CALICCHIO F, et al. Diabetic cardiomyopathy: How can cardiac magnetic resonance help?[J]. Acta Diabetol, 2020, 57(9): 1027-1034. DOI: 10.1007/s00592-020-01528-2.
[3]
MAVROGENI S I, KALLIFATIDIS A, KOURTIDOU S, et al. Cardiovascular magnetic resonance for the evaluation of patients with cardiovascular disease: an overview of current indications, limitations, and procedures[J/OL]. Hellenic J Cardiol, 2023, 70: 53-64 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/36706867/. DOI: 10.1016/j.hjc.2023.01.003.
[4]
PEZEL T, VIALLON M, CROISILLE P, et al. Imaging interstitial fibrosis, left ventricular remodeling, and function in stage a and B heart failure[J]. JACC Cardiovasc Imaging, 2021, 14(5): 1038-1052. DOI: 10.1016/j.jcmg.2020.05.036.
[5]
MUSER D, CASTRO S A, SANTANGELI P, et al. Clinical applications of feature-tracking cardiac magnetic resonance imaging[J]. World J Cardiol, 2018, 10(11): 210-221. DOI: 10.4330/wjc.v10.i11.210.
[6]
SCULLY P R, BASTARRIKA G, MOON J C, et al. Myocardial extracellular volume quantification by cardiovascular magnetic resonance and computed tomography[J/OL]. Curr Cardiol Rep, 2018, 20(3): 15 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/29511861/. DOI: 10.1007/s11886-018-0961-3.
[7]
SHEN L T, SHI R, YANG Z G, et al. Progress in cardiac magnetic resonance feature tracking for evaluating myocardial strain in type-2 diabetes mellitus[J]. Curr Diabetes Rev, 2024, 20(8): 98-109. DOI: 10.2174/0115733998277127231211063107.
[8]
OLIVEIRA A L A, DE OLIVEIRA M E P, GUIMARÃES L V, et al. Evaluation of right ventricle systolic function after tetralogy of Fallot repair: a systematic review comparing cardiac magnetic resonance and global longitudinal strain[J]. Echocardiography, 2023, 40(1): 4-14. DOI: 10.1111/echo.15486.
[9]
MAREY A, ALABDULLAH A, GHORAB H, et al. Extracellular volume fraction and native T1 mapping in diabetic cardiomyopathy: a comprehensive meta-analysis[J/OL]. BMC Cardiovasc Disord, 2025, 25(1): 70 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/39893360/. DOI: 10.1186/s12872-025-04496-z.
[10]
KE L L. Clinical value of color Doppler flow vector imaging in quantitative evaluation of intracardiac hemodynamics in patients with myocardial infarction complicated with ventricular aneurysm[J]. Med Equip, 2024, 37(5): 99-101, 108. DOI: 10.3969/j.issn.1002-2376.2024.05.028.
[11]
XIE L J, DONG Z H, YANG Z G, et al. Assessment of left ventricular deformation in patients with type 2 diabetes mellitus by cardiac magnetic resonance tissue tracking[J/OL]. Sci Rep, 2020, 10: 13126 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/32753616/. DOI: 10.1038/s41598-020-69977-x.
[12]
SHANG Y N, ZHANG Y L, LENG W L, et al. Assessment of right ventricular function using cardiovascular magnetic resonance in patients with type 2 diabetes mellitus[J]. Quant Imaging Med Surg, 2022, 12(2): 1539-1548. DOI: 10.21037/qims-21-376.
[13]
CHOWDHARY A, JEX N, THIRUNAVUKARASU S, et al. Prospective longitudinal characterization of the relationship between diabetes and cardiac structural and functional changes[J/OL]. Cardiol Res Pract, 2022, 2022: 6401180 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/35178251/. DOI: 10.1155/2022/6401180.
[14]
ELSAYED N A, ALEPPO G, ARODA V R, et al. 2. classification and diagnosis of diabetes: standards of care in diabetes-2023[J/OL]. Diabetes Care, 2023, 46(Suppl 1): S19-S40 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/36507649/. DOI: 10.2337/dc23-S002.
[15]
ROBINSON A A, CHOW K, SALERNO M. Myocardial T1 and ECV measurement: underlying concepts and technical considerations[J]. JACC Cardiovasc Imaging, 2019, 12(11Pt 2): 2332-2344. DOI: 10.1016/j.jcmg.2019.06.031.
[16]
JIA G H, WHALEY-CONNELL A, SOWERS J R. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease[J]. Diabetologia, 2018, 61(1): 21-28. DOI: 10.1007/s00125-017-4390-4.
[17]
ZHANG W, LIU L, CHEN H Y, et al. Association between the triglyceride-glucose index and the presence and prognosis of coronary microvascular dysfunction in patients with chronic coronary syndrome[J/OL]. Cardiovasc Diabetol, 2023, 22(1): 113 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/37179333/. DOI: 10.1186/s12933-023-01846-z.
[18]
JIANG L, XU H Y, LI Y, et al. The differential effects of dyslipidemia status and triglyceride-glucose index on left ventricular global function and myocardial microcirculation in diabetic individuals: a cardiac magnetic resonance study[J/OL]. Cardiovasc Diabetol, 2024, 23(1): 345 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/39300497/. DOI: 10.1186/s12933-024-02435-4.
[19]
AKASHEVA D U, UTINA T G, DZHIOEVA O N, et al. Subclinical left ventricular dysfunction over seven-year follow-up in type 2 diabetes patients without cardiovascular diseases[J/OL]. Biomedicines, 2024, 12(9): 2031 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/39335545/. DOI: 10.3390/biomedicines12092031.
[20]
STORZ C, HETTERICH H, LORBEER R, et al. Myocardial tissue characterization by contrast-enhanced cardiac magnetic resonance imaging in subjects with prediabetes, diabetes, and normal controls with preserved ejection fraction from the general population[J]. Eur Heart J Cardiovasc Imaging, 2018, 19(6): 701-708. DOI: 10.1093/ehjci/jex190.
[21]
DILLMANN W H. Diabetic cardiomyopathy[J]. Circ Res, 2019, 124(8): 1160-1162. DOI: 10.1161/circresaha.118.314665.
[22]
ZHANG H K, SHI C Y, ZHANG N, et al. The research of detecting early myocardial fibrosis by cardiac magnetic resonance T1mapping in type 2 diabetic cardiomyopathy mouse model[J]. J Cardiovasc Pulm Dis, 2020, 39(7): 860-867. DOI: 10.3969/j.issn.1007-5062.2020.07.026.
[23]
VONK-NOORDEGRAAF A, HADDAD F, CHIN K M, et al. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology[J/OL]. J Am Coll Cardiol, 2013, 62(25Suppl): D22-D33 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/24355638/. DOI: 10.1016/j.jacc.2013.10.027.
[24]
HU B Y, WANG J, YANG Z G, et al. Cardiac magnetic resonance feature tracking for quantifying right ventricular deformation in type 2 diabetes mellitus patients[J/OL]. Sci Rep, 2019, 9: 11148 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/31366951/. DOI: 10.1038/s41598-019-46755-y.
[25]
SHAO G Z, CAO Y K, CUI Y, et al. Early detection of left atrial and bi-ventricular myocardial strain abnormalities by MRI feature tracking in normotensive or hypertensive T2DM patients with preserved LV function[J/OL]. BMC Cardiovasc Disord, 2020, 20(1): 196 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/32326882/. DOI: 10.1186/s12872-020-01469-2.
[26]
REDDY Y N V, CARTER R E, SORIMACHI H, et al. Dapagliflozin and right ventricular-pulmonary vascular interaction in heart failure with preserved ejection fraction: a secondary analysis of a randomized clinical trial[J]. JAMA Cardiol, 2024, 9(9): 843-851. DOI: 10.1001/jamacardio.2024.1914.
[27]
WHITAKER M E, NAIR V, SINARI S, et al. Diabetes mellitus associates with increased right ventricular afterload and remodeling in pulmonary arterial hypertension[J/OL]. Am J Med, 2018, 131(6): 702.e7-702702.e13 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/29421689/. DOI: 10.1016/j.amjmed.2017.12.046.
[28]
GRINNAN D, FARR G, FOX A, et al. The role of hyperglycemia and insulin resistance in the development and progression of pulmonary arterial hypertension[J/OL]. J Diabetes Res, 2016, 2016: 2481659 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/27376089/. DOI: 10.1155/2016/2481659.
[29]
BOGDANOVIĆ J, AŠANIN M, KRLJANAC G, et al. Impact of acute hyperglycemia on layer-specific left ventricular strain in asymptomatic diabetic patients: an analysis based on two-dimensional speckle tracking echocardiography[J/OL]. Cardiovasc Diabetol, 2019, 18(1): 68 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/31159858/. DOI: 10.1186/s12933-019-0876-3.
[30]
JIANG L, WANG J, LIU X, et al. The combined effects of cardiac geometry, microcirculation, and tissue characteristics on cardiac systolic and diastolic function in subclinical diabetes mellitus-related cardiomyopathy[J/OL]. Int J Cardiol, 2020, 320: 112-118 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/32679137/. DOI: 10.1016/j.ijcard.2020.07.013.
[31]
CHADALAVADA S, FUNG K, RAUSEO E, et al. Myocardial strain measured by cardiac magnetic resonance predicts cardiovascular morbidity and death[J]. J Am Coll Cardiol, 2024, 84(7): 648-659. DOI: 10.1016/j.jacc.2024.05.050.
[32]
TRÖBS S O, PROCHASKA J H, SCHWUCHOW-THONKE S, et al. Association of global longitudinal strain with clinical status and mortality in patients with chronic heart failure[J]. JAMA Cardiol, 2021, 6(4): 448-456. DOI: 10.1001/jamacardio.2020.7184.
[33]
ALASHI A, MENTIAS A, ABDALLAH A, et al. Incremental prognostic utility of left ventricular global longitudinal strain in asymptomatic patients with significant chronic aortic regurgitation and preserved left ventricular ejection fraction[J]. JACC Cardiovasc Imaging, 2018, 11(5): 673-682. DOI: 10.1016/j.jcmg.2017.02.016.
[34]
CASEBEER A, HORTER L, HAYDEN J, et al. Phenotypic clustering of heart failure with preserved ejection fraction reveals different rates of hospitalization[J]. J Cardiovasc Med (Hagerstown), 2021, 22(1): 45-52. DOI: 10.2459/JCM.0000000000001116.
[35]
LI X N, LIU Y T, KANG S, et al. Interdependence between myocardial deformation and perfusion in patients with T2DM and HFpEF: a feature-tracking and stress perfusion CMR study[J/OL]. Cardiovasc Diabetol, 2024, 23(1): 303 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/39152461/. DOI: 10.1186/s12933-024-02380-2.
[36]
SHI R, JIANG Y N, QIAN W L, et al. Assessment of left atrioventricular coupling and left atrial function impairment in diabetes with and without hypertension using CMR feature tracking[J/OL]. Cardiovasc Diabetol, 2023, 22(1): 295 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/37904206/. DOI: 10.1186/s12933-023-01997-z.
[37]
KOVACOVA Z, THARP W G, LIU D X, et al. Adipose tissue natriuretic peptide receptor expression is related to insulin sensitivity in obesity and diabetes[J]. Obesity (Silver Spring), 2016, 24(4): 820-828. DOI: 10.1002/oby.21418.
[38]
COUÉ M, BADIN P M, VILA I K, et al. Defective natriuretic peptide receptor signaling in skeletal muscle links obesity to type 2 diabetes[J]. Diabetes, 2015, 64(12): 4033-4045. DOI: 10.2337/db15-0305.
[39]
MENG L L, LU Y, WANG X L, et al. NPRC deletion attenuates cardiac fibrosis in diabetic mice by activating PKA/PKG and inhibiting TGF-β1/Smad pathways[J/OL]. Sci Adv, 2023, 9(31): eadd4222 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/37531438/. DOI: 10.1126/sciadv.add4222.
[40]
YUAN M, GONG M Q, HE J L, et al. IP3R1/GRP75/VDAC1 complex mediates endoplasmic reticulum stress-mitochondrial oxidative stress in diabetic atrial remodeling[J/OL]. Redox Biol, 2022, 52: 102289 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/35344886/. DOI: 10.1016/j.redox.2022.102289.
[41]
JONES T L M, KAUR S, KANG N, et al. Impaired calcium handling mechanisms in atrial trabeculae of diabetic patients[J/OL]. Physiol Rep, 2023, 11(3): e15599 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/36750180/. DOI: 10.14814/phy2.15599.

PREV Value of non-contrast cardiac magnetic resonance T1ρ mapping in assessing myocardial fibrosis in hypertrophic and dilated cardiomyopathy
NEXT Predictive value of DCE-MRI and TIC combined ADC models for the expression status of hormone receptors in mass-type breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn