Share:
Share this content in WeChat
X
Clinical Article
Efficacy study of diffusion spectrum imaging-based habitat imaging in differentiating heterogeneity between clear cell renal cell carcinoma and fat-poor angiomyolipoma
SHI Nian  ZHANG Lei  MEI Chao  SHI Bowen  ZHANG Ninggui  RUAN Ao  YE Jing 

Cite this article as: SHI N, ZHANG L, MEI C, et al. Efficacy study of diffusion spectrum imaging-based habitat imaging in differentiating heterogeneity between clear cell renal cell carcinoma and fat-poor angiomyolipoma[J]. Chin J Magn Reson Imaging, 2025, 16(9): 105-111. DOI:10.12015/issn.1674-8034.2025.09.016.


[Abstract] Objectives To investigate the diagnostic value of habitat imaging based on diffusion spectrum imaging (DSI) for differentiating clear cell renal cell carcinoma (ccRCC) at different grades and fat-poor angiomyolipoma (fpAML).Materials and Methods A prospective study was conducted on 59 patients, all of whom underwent multi-b-value diffusion-weighted imaging (DWI) examination (0 to 3000 s/mm2). The apparent diffusion coefficient (ADC), the fractional order calculus (FROC) model-related parameters, the diffusion coefficient (D), the tissue heterogeneity-related parameters (fractional order parameter β), and the microstructure quantity (μ) were measured. The mean diffusivity (MD) and mean kurtosis (MK) of the diffusion kurtosis imaging (DKI) model-related parameters, as well as the true diffusion coefficient (Dt), pseudo-diffusion coefficient (D*), and perfusion fraction (f) of the intravoxel incoherent motion (IVIM) model-related parameters were also measured. Based on these parameters, the paired data of each voxel within the renal tumor region of all subjects were input into the K-means algorithm, and the renal tumors were classified into four habitats. The diagnostic value of these parameters for different grades of ccRCC and fpAML was analyzed using the receiver operating characteristic (ROC) curve.Results Habitat 1, characterized by low heterogeneity, high perfusion and low diffusion, and habitat 4, characterized by high heterogeneity, high perfusion and high diffusion, show differences in fpAML and ccRCC of different grades. Habitat 1 and 4 were statistically significant in differentiating fpAML and different grades of ccRCC (P < 0.05). Among them, the area under the curve (AUC) of habitat 1, 4 and their combination for differentiating fpAML and low-grade ccRCC was 0.90 [95% confidence interval (CI): 0.77 to 0.97], 0.84 (95% CI: 0.70 to 0.94), and 0.89 (95% CI: 0.76 to 0.97), respectively. The AUC of habitat 1 and their combination for differentiating fpAML and high-grade ccRCC was 0.68 (95% CI: 0.49 to 0.84) and 0.72 (95% CI: 0.53 to 0.87), respectively. The AUC of habitat 1, 4 and their combination for differentiating high and low grades of ccRCC was 0.73 (95% CI: 0.57 to 0.85), 0.76 (95% CI: 0.61 to 0.88), and 0.76 (95% CI: 0.60 to 0.87), respectively.Conclusions The use of habitat imaging based on DSI shows the potential of non-invasive diagnosis of fpAML and different grades of ccRCC in clinical practice, and has high accuracy.
[Keywords] clear cell renal cell carcinoma;fat-poor angiomyolipoma;magnetic resonance imaging;diffusion-weighted imaging;habitat imaging;differential diagnosis

SHI Nian1, 2   ZHANG Lei3   MEI Chao2   SHI Bowen2   ZHANG Ninggui2   RUAN Ao2   YE Jing1, 2*  

1 The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou 225001, China

2 Department of Radiology, Northern Jiangsu People's Hospital, Yangzhou 225001, China

3 Department of Radiology, The Affiliated Huaian Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huaian 223002, China

Corresponding author: JING Y, E-mail: yejing197206@163.com

Conflicts of interest   None.

Received  2025-04-16
Accepted  2025-09-10
DOI: 10.12015/issn.1674-8034.2025.09.016
Cite this article as: SHI N, ZHANG L, MEI C, et al. Efficacy study of diffusion spectrum imaging-based habitat imaging in differentiating heterogeneity between clear cell renal cell carcinoma and fat-poor angiomyolipoma[J]. Chin J Magn Reson Imaging, 2025, 16(9): 105-111. DOI:10.12015/issn.1674-8034.2025.09.016.

[1]
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2021[J]. CA A Cancer J Clinicians, 2021, 71(1): 7-33. DOI: 10.3322/caac.21654.
[2]
YANG M Y, HE X P, XU L F, et al. CT-based transformer model for non-invasively predicting the Fuhrman nuclear grade of clear cell renal cell carcinoma[J/OL]. Front Oncol, 2022, 12: 961779 [2025-04-25]. https://pubmed.ncbi.nlm.nih.gov/36249050/. DOI: 10.3389/fonc.2022.961779.
[3]
QIU X, GUO L, DING X B, et al. Solid renal cell carcinoma: imaging diagnosis and differential diagnosis[J]. Chin J Radiol, 2020, 54(9): 917-920. DOI: 10.3760/cma.j.cn112149-20200612-00806.
[4]
YE J, XU Q, WANG S A, et al. Differentiation between fat-poor angiomyolipoma and clear cell renal cell carcinoma: qualitative and quantitative analysis using arterial spin labeling MR imaging[J]. Abdom Radiol (NY), 2020, 45(2): 512-519. DOI: 10.1007/s00261-019-02303-w.
[5]
VOLPE A, PANZARELLA T, RENDON R A, et al. The natural history of incidentally detected small renal masses[J]. Cancer, 2004, 100(4): 738-745. DOI: 10.1002/cncr.20025.
[6]
LEVERIDGE M J, FINELLI A, KACHURA J R, et al. Outcomes of small renal mass needle core biopsy, nondiagnostic percutaneous biopsy, and the role of repeat biopsy[J]. Eur Urol, 2011, 60(3): 578-584. DOI: 10.1016/j.eururo.2011.06.021.
[7]
SUN F, HUANG Y, WANG J, et al. Research progress in diffusion spectrum imaging[J/OL]. Brain Sci, 2023, 13(10): 1497 [2025-04-25]. https://pubmed.ncbi.nlm.nih.gov/37891866/. DOI: 10.3390/brainsci13101497.
[8]
TANG L, ZHOU X J. Diffusion MRI of cancer: From low to high b-values[J]. J Magn Reson Imaging, 2019, 49(1): 23-40. DOI: 10.1002/jmri.26293.
[9]
MATSUMOTO S, ARITA Y, YOSHIDA S, et al. Utility of radiomics features of diffusion-weighted magnetic resonance imaging for differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma: model development and external validation[J]. Abdom Radiol (NY), 2022, 47(6): 2178-2186. DOI: 10.1007/s00261-022-03486-5.
[10]
ZHU Q Q, SUN J, YE J, et al. Comparison of conventional diffusion-weighted imaging and intravoxel incoherent motion in differentiating between chromophobe renal cell carcinoma and renal oncocytoma: a preliminary studyFree[J]. Br J Radiol, 2024, 97(1158): 1146-1152. DOI: 10.1093/bjr/tqae088.
[11]
ZHU J, LUO X J, GAO J Y, et al. Application of diffusion kurtosis tensor MR imaging in characterization of renal cell carcinomas with different pathological types and grades[J/OL]. Cancer Imaging, 2021, 21(1): 30 [2025-04-25]. https://pubmed.ncbi.nlm.nih.gov/33726862/. DOI: 10.1186/s40644-021-00394-7.
[12]
TRAMANZOLI P, CASTELLANI D, DE STEFANO V, et al. Radiomics vs radiologist in bladder and renal cancer. Results from a systematic review[J/OL]. Cent European J Urol, 2023[2025-04-25]. https://pubmed.ncbi.nlm.nih.gov/37064257/. DOI: 10.5173/ceju.2023.252
[13]
LAMBIN P, LEIJENAAR R T H, DEIST T M, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-762. DOI: 10.1038/nrclinonc.2017.141.
[14]
LI X X, LIN J L, QI H L, et al. Radiomics predict the WHO/ISUP nuclear grade and survival in clear cell renal cell carcinoma[J/OL]. Insights Imaging, 2024, 15(1): 175 [2025-04-25]. https://pubmed.ncbi.nlm.nih.gov/38992169/. DOI: 10.1186/s13244-024-01739-z.
[15]
ROGASCH J M M, SHI K Y, KERSTING D, et al. Methodological evaluation of original articles on radiomics and machine learning for outcome prediction based on positron emission tomography (PET)[J]. Nuklearmedizin, 2023, 62(6): 361-369. DOI: 10.1055/a-2198-0545.
[16]
TAR P D, THACKER N A, BABUR M, et al. Habitat imaging of tumors enables high confidence sub-regional assessment of response to therapy[J/OL]. Cancers (Basel), 2022, 14(9): 2159 [2025-04-25]. https://pubmed.ncbi.nlm.nih.gov/35565288/. DOI: 10.3390/cancers14092159.
[17]
JARDIM-PERASSI B V, HUANG S N, DOMINGUEZ-VIQUEIRA W, et al. Multiparametric MRI and coregistered histology identify tumor habitats in breast cancer mouse models[J]. Cancer Res, 2019, 79(15): 3952-3964. DOI: 10.1158/0008-5472.CAN-19-0213.
[18]
NAPEL S, MU W, JARDIM-PERASSI B V, et al. Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats[J]. Cancer, 2018, 124(24): 4633-4649. DOI: 10.1002/cncr.31630.
[19]
YANG L, HU H J, YANG X J, et al. Whole-tumor histogram analysis of multiple non-Gaussian diffusion models at high b values for assessing cervical cancer[J]. Abdom Radiol (NY), 2024, 49(7): 2513-2524. DOI: 10.1007/s00261-024-04486-3.
[20]
ZHOU M, BAO D Y, HUANG H Y, et al. Utilization of diffusion-weighted derived mathematical models to predict prognostic factors of resectable rectal cancer[J]. Abdom Radiol (NY), 2024, 49(9): 3282-3293. DOI: 10.1007/s00261-024-04239-2.
[21]
GUO R, LU F, LIN J, et al. Multi-b-value DWI to evaluate the synergistic antiproliferation and anti-heterogeneity effects of bufalin plus sorafenib in an orthotopic HCC model[J/OL]. Eur Radiol Exp, 2024, 8(1): 43 [2025-04-25]. https://pubmed.ncbi.nlm.nih.gov/38467904/. DOI: 10.1186/s41747-024-00448-y.
[22]
XU C, WANG Z H, WANG A L, et al. Breast cancer: multi-b-value diffusion weighted habitat imaging in predicting pathologic complete response to neoadjuvant chemotherapy[J]. Acad Radiol, 2024, 31(12): 4733-4742. DOI: 10.1016/j.acra.2024.06.004.24.06.004.
[23]
ZHANG Y F, CHEN J J, YANG C, et al. Preoperative prediction of microvascular invasion in hepatocellular carcinoma using diffusion-weighted imaging-based habitat imaging[J]. Eur Radiol, 2024, 34(5): 3215-3225. DOI: 10.1007/s00330-023-10339-2.
[24]
VAN OOSTENBRUGGE T J, SPENKELINK I M, BOKACHEVA L, et al. Kidney tumor diffusion-weighted magnetic resonance imaging derived ADC histogram parameters combined with patient characteristics and tumor volume to discriminate oncocytoma from renal cell carcinoma[J/OL]. Eur J Radiol, 2021, 145: 110013 [2025-04-25]. https://pubmed.ncbi.nlm.nih.gov/34768055/. DOI: 10.1016/j.ejrad.2021.110013.
[25]
ZOU J Z, YE J, ZHU W R, et al. Diffusion-weighted and diffusion kurtosis imaging analysis of microstructural differences in clear cell renal cell carcinoma: a comparative study[J/OL]. Br J Radiol, 2023, 96(1150): 20230146 [2025-04-25]. https://pubmed.ncbi.nlm.nih.gov/37393526/. DOI: 10.1259/bjr.20230146.
[26]
SHEN L J, ZHOU L P, LIU X H, et al. Comparison of biexponential and monoexponential DWI in evaluation of Fuhrman grading of clear cell renal cell carcinoma[J]. Diagn Interv Radiol, 2017, 23(2): 100-105. DOI: 10.5152/dir.2016.15519.
[27]
SHI B W, XUE K, YIN Y L, et al. Grading of clear cell renal cell carcinoma using diffusion MRI with a fractional order Calculus model[J]. Acta Radiol, 2023, 64(1): 421-430. DOI: 10.1177/02841851211072482.
[28]
CANETE-PORTILLO S, DEL CARMEN RODRIGUEZ PENA M, WANG D Z, et al. Vascular architectural patterns in clear cell renal cell carcinoma and clear cell papillary renal cell carcinoma[J]. Virchows Arch, 2021, 479(6): 1187-1196. DOI: 10.1007/s00428-021-03214-2.
[29]
CAO J F, LUO X, ZHOU Z M, et al. Comparison of diffusion-weighted imaging mono-exponential mode with diffusion kurtosis imaging for predicting pathological grades of clear cell renal cell carcinoma[J/OL]. Eur J Radiol, 2020, 130: 109195 [2025-04-25]. https://pubmed.ncbi.nlm.nih.gov/32763475/. DOI: 10.1016/j.ejrad.2020.109195.
[30]
LI Y Z, LIH T M, DHANASEKARAN S M, et al. Histopathologic and proteogenomic heterogeneity reveals features of clear cell renal cell carcinoma aggressiveness[J/OL]. Cancer Cell, 2023, 41(1): 139-163.e17 [2025-04-25]. https://pubmed.ncbi.nlm.nih.gov/36563681/. DOI: 10.1016/j.ccell.2022.12.001.
[31]
HU S, PENG Y, WANG Q S, et al. T2*-weighted imaging and diffusion kurtosis imaging (DKI) of rectal cancer: correlation with clinical histopathologic prognostic factors[J]. Abdom Radiol (NY), 2022, 47(2): 517-529. DOI: 10.1007/s00261-021-03369-1.
[32]
DING Y Q, TAN Q X, MAO W, et al. Differentiating between malignant and benign renal tumors: do IVIM and diffusion kurtosis imaging perform better than DWI [J]. Eur Radiol, 2019, 29(12): 6930-6939. DOI: 10.1007/s00330-019-06240-6.
[33]
CAO J F, DONG J Y, SU G, et al. Comparison of the monoexponential and biexponential models of diffusion-weighted magnetic imaging in grading clear-cell renal cell carcinoma: a case-control study[J]. Transl Androl Urol, 2024, 13(5): 792-801. DOI: 10.21037/tau-24-141.
[34]
YANG G J, GONG A D, NIE P, et al. Contrast-enhanced CT texture analysis for distinguishing fat-poor renal angiomyolipoma from chromophobe renal cell carcinoma[J/OL]. Mol Imaging, 2019, 18: 1536012119883161 [2025-04-25]. https://pubmed.ncbi.nlm.nih.gov/31625454/. DOI: 10.1177/1536012119883161.
[35]
LEE H S, HONG H, KIM J, et al. Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation[J]. Med Phys, 2018, 45(4): 1550-1561. DOI: 10.1002/mp.12828.
[36]
GAING B, SIGMUND E E, HUANG W C, et al. Subtype differentiation of renal tumors using voxel-based histogram analysis of intravoxel incoherent motion parameters[J]. Invest Radiol, 2015, 50(3): 144-152. DOI: 10.1097/RLI.0000000000000111.
[37]
LI C R, TAN J, LI H Y, et al. The value of multiparametric MRI-based habitat imaging for differentiating uterine sarcomas from atypical leiomyomas: a multicentre study[J]. Abdom Radiol, 2025, 50(2): 995-1008. DOI: 10.1007/s00261-024-04539-7.

PREV Development and validation of an intratumoral and peritumoral deep learning radiomics model based on DCE-MRI for predicting the response to neoadjuvant chemotherapy in triple-negative breast cancer: A multicenter study
NEXT The value of susceptibility weighted imaging to differentiate the benign from malignant Bosniak ⅡF-Ⅲ renal cystic lesions
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn