Share:
Share this content in WeChat
X
Clinical Article
The value of ADC histogram in preoperative prediction of lymphvascular space invasion in early cervical cancer
LI Hongxia  REN Zhen  MO Fan  LÜ Fajin 

Cite this article as: LI H X, REN Z, MO F, et al. The value of ADC histogram in preoperative prediction of lymphvascular space invasion in early cervical cancer[J]. Chin J Magn Reson Imaging, 2025, 16(9): 132-139. DOI:10.12015/issn.1674-8034.2025.09.020.


[Abstract] Objective To explore the application value of the intratumoral and peritumoral apparent diffusion coefficient (ADC) histogram of the whole tumor in preoperative prediction of lymphovascular space invasion (LVSI) in patients with early cervical cancer.Materials and Methods A retrospective analysis was conducted on 150 patients with stage ⅠB-ⅡA1 cervical cancer confirmed by postoperative pathology, and were divided into LVSI-positive (n = 45) and LVSI-negative (n = 105) groups according to postoperative pathological results. All patients underwent pelvic MRI before surgery, and the region of interest (ROI) were manually delineated layer by layer along the largest edge of the tumor on the ADC axial image, with the peritumoral region being uniformly expanded outward. Whole-volume ADC histogram analysis was performed for intratumoral region, intratumoral-2 mm peritumoral region and intratumoral-4 mm peritumoral region, respectively. Difference in clinicopathologic characteristics and ADC histogram parameters between the two groups were analyzed, and establish a joint parameter model. Receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficiency of each parameter and the combined parameter model in preoperative prediction of LVSI status in patients with early cervical cancer, the area under the curve (AUC), optimum cutoff value, sensitivity and specificity were calculated, and the AUC values of each parameter and the joint model were statistically compared using the DeLong test.Results In the intratumoral ADC histogram analysis, ADCmax, ADCmean, ADC50, ADC75, ADC90, ADC95, ADCstdev, ADCvariance and ADCkurtosis in the LVSI-positive group were significantly lower than in the LVSI-negative group (P < 0.05). Intratumoral ADC histogram parameters in predicting LVSI status of early cervical cancer, ADCmax, ADC90 and ADC95 had the best diagnostic efficacy, with AUC of 0.747, 0.756 and 0.776, respectively (P < 0.05). The AUCs of the combined parameter models for intratumoral, intratumoral+2 mm peritumoral, and intratumoral+4 mm peritumoral regions were 0.830, 0.710, and 0.673, respectively. DeLong test revealed that the AUC of the intratumoral combined model was significantly higher than that of the intratumoral+2 mm peritumoral (P < 0.05) and intratumoral+4 mm peritumoral combined models (P < 0.05); no significant difference was found between the AUCs of the intratumoral+2 mm peritumoral and intratumoral+4 mm peritumoral combined models (P > 0.05).Conclusions ADC histogram based on whole tumor volume has potential value in preoperative predicting LVSI status in patients with early cervical cancer, among which ADCmax, ADC90 and ADC95 are the most promising predictive parameters, and peritumoral region cannot increase the diagnostic efficiency of ADC histogram.
[Keywords] cervical cancer;lymphatic vascular space infiltration;magnetic resonance imaging;diffusion weighted imaging;apparent diffusion coefficient;histogram analysis

LI Hongxia1   REN Zhen1   MO Fan1   LÜ Fajin1, 2*  

1 State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China

2 Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

Corresponding author: LÜ F J, E-mail: fajinlv@163.com

Conflicts of interest   None.

Received  2025-04-03
Accepted  2025-08-25
DOI: 10.12015/issn.1674-8034.2025.09.020
Cite this article as: LI H X, REN Z, MO F, et al. The value of ADC histogram in preoperative prediction of lymphvascular space invasion in early cervical cancer[J]. Chin J Magn Reson Imaging, 2025, 16(9): 132-139. DOI:10.12015/issn.1674-8034.2025.09.020.

[1]
Professional Committee of Gynecological Oncology of Chinese Anti-Cancer Association. Guidelines for diagnosis and treatment of cervical cancer (2021 edition)[J]. China Oncol, 2021, 31(6): 474-489. DOI: 10.19401/j.cnki.1007-3639.2021.06.06.
[2]
COHEN P A, JHINGRAN A, OAKNIN A, et al. Cervical cancer[J]. Lancet, 2019, 393(10167): 169-182. DOI: 10.1016/S0140-6736(18)32470-X.
[3]
ZHANG J, WEN H W. Relationship among lymphovascular space invasion with clinicopathological factors and survival analysis in early cervical adenocarcinoma[J]. Prog Obstet Gynecol, 2020, 29(11): 819-824, 829. DOI: 10.13283/j.cnki.xdfckjz.2020.11.033.
[4]
ZHANG C Y, JIANG H Y, YUAN L, et al. CircVPRBP inhibits nodal metastasis of cervical cancer by impeding RACK1 O-GlcNAcylation and stability[J]. Oncogene, 2023, 42(11): 793-807. DOI: 10.1038/s41388-023-02595-9.
[5]
MARCHIOLÉ P, BUÉNERD A, BENCHAIB M, et al. Clinical significance of lympho vascular space involvement and lymph node micrometastases in early-stage cervical cancer: a retrospective case-control surgico-pathological study[J]. Gynecol Oncol, 2005, 97(3): 727-732. DOI: 10.1016/j.ygyno.2005.01.004.
[6]
ZHOU H, LIU Y Y, YU X L, et al. Interpretation of 2025 NCCN clinical practice guidelines for cervical cancer (1st edition)[J]. Chin J Pract Gynecol Obstet, 2025, 41(1): 96-102. DOI: 10.19538/j.fk2025010122.
[7]
RE G L, CUCINELLA G, ZACCARIA G, et al. Role of MRI in the assessment of cervical cancer[J]. Semin Ultrasound CT MRI, 2023, 44(3): 228-237. DOI: 10.1053/j.sult.2023.03.010.
[8]
LIU Z, ZHANG J, LI Y D, et al. Value of diffusion-weighted magnetic resonance imaging in predicting the effect of radiochemotherapy for cervical cancer[J]. J Qingdao Univ Med Sci, 2021, 57(1): 30-34. DOI: 10.11712/jms.2096-5532.2021.57.030.
[9]
GHARDON S S L, HEMIDA R, BORG M A, et al. Correlative study between apparent diffusion coefficient value and grading of cervical cancer[J/OL]. Egypt J Radiol Nucl Med, 2022, 53(1): 170 [2025-04-02]. https://ejrnm.springeropen.com/articles/10.1186/s43055-022-00850-9. DOI: 10.1186/s43055-022-00850-9.
[10]
WILSON J, CHANDRAMOHAN A, REDDY J K, et al. MRI apparent diffusion coefficient (ADC) values as a predictive biomarker on the outcomes of chemoradiotherapy in carcinoma cervix[J/OL]. Int J Radiat Oncol, 2021, 111(3): e625 [2025-04-02]. https://www.sciencedirect.com/science/article/abs/pii/S0360301621025311. DOI: 10.1016/j.ijrobp.2021.07.1661.
[11]
MU N W, ZHANG J. Progress in the application of ADC histogram analysis on diffusion weighted imaging in cervical cancer[J]. J Mol Imag, 2020, 43(4): 709-712. DOI: 10.12122/j.issn.1674-4500.2020.04.35.
[12]
LI J, PAN Z H, XIAO K, et al. Correlation between ADC value of diffusion weighted MR imaging and pathological grading of elderly cervical cancer[J]. Radiol Pract, 2022, 37(5): 589-593. DOI: 10.13609/j.cnki.1000-0313.2022.05.011.
[13]
LIU J, CHENG J L, ZHANG Y. Differentiation of stage IB and Ⅱ cervical cancer by apparent diffusion coefficient histogram: a preliminary study[J]. China Med Devices, 2020, 35(1): 68-70, 98. DOI: 10.3969/j.issn.1674-1633.2020.01.018.
[14]
TÜRKEŞ F, DERE Ö, DINÇ F, et al. The efficacy of MRI-based ADC measurements in detecting axillary lymph node metastasis: evaluation of a prospective study[J]. Curr Oncol, 2024, 31(11): 6598-6607. DOI: 10.3390/curroncol31110487.
[15]
PERUCHO J A U, WANG M D, TSE K Y, et al. Association between MRI histogram features and treatment response in locally advanced cervical cancer treated by chemoradiotherapy[J]. Eur Radiol, 2021, 31(3): 1727-1735. DOI: 10.1007/s00330-020-07217-6.
[16]
FIZ F, MASCI C, COSTA G, et al. PET/CT-based radiomics of mass-forming intrahepatic cholangiocarcinoma improves prediction of pathology data and survival[J]. Eur J Nucl Med Mol Imaging, 2022, 49(10): 3387-3400. DOI: 10.1007/s00259-022-05765-1.
[17]
LI C L, SONG L R, YIN J D. Intratumoral and peritumoral radiomics based on functional parametric maps from breast DCE-MRI for prediction of HER-2 and ki-67 status[J]. J Magn Reson Imaging, 2021, 54(3): 703-714. DOI: 10.1002/jmri.27651.
[18]
SHI J X, DONG Y, JIANG W Y, et al. MRI-based peritumoral radiomics analysis for preoperative prediction of lymph node metastasis in early-stage cervical cancer: a multi-center study[J]. Magn Reson Imaging, 2022, 88: 1-8. DOI: 10.1016/j.mri.2021.12.008.
[19]
XIAO M L, FU L, WEI Y, et al. Intratumoral and peritumoral MRI radiomics nomogram for predicting parametrial invasion in patients with early-stage cervical adenocarcinoma and adenosquamous carcinoma[J]. Eur Radiol, 2024, 34(2): 852-862. DOI: 10.1007/s00330-023-10042-2.
[20]
KONG T W, KIM J, SON J H, et al. Preoperative nomogram for prediction of microscopic parametrial infiltration in patients with FIGO stage IB cervical cancer treated with radical hysterectomy[J]. Gynecol Oncol, 2016, 142(1): 109-114. DOI: 10.1016/j.ygyno.2016.05.010.
[21]
LIU L, HE Y M, YANG Z T. Application of MRI diffusion-weighted imaging and its quantitative parameters in the diagnosis and preoperative staging of cervical cancer[J]. Chin J CT MRI, 2023, 21(3): 124-126.
[22]
FAN J W, LI W F, CHENG M Y, et al. Nomograms combining clinical factors and apparent diffusion coefficient to predict downstaging and progression-free survival after concurrent chemoradiotherapy in patients with cervical cancer[J]. Acta Radiol, 2024, 65(11): 1430-1439. DOI: 10.1177/02841851241283042.
[23]
CHENG J M, LUO W X, TAN B G, et al. Whole-tumor histogram analysis of apparent diffusion coefficients for predicting lymphovascular space invasion in stage ⅠB~ⅡA cervical cancer[J/OL]. Front Oncol, 2023, 13: 1206659 [2025-04-02]. https://pubmed.ncbi.nlm.nih.gov/37404753/. DOI: 10.3389/fonc.2023.1206659.
[24]
DU H W, LOU L, WU S S, et al. Efficacy analysis of different types of full-volume ADC values to evaluate the pathological grading of cervical cancer[J]. J Rare Uncommon Dis, 2021, 28(2): 58-62. DOI: 10.3969/j.issn.1009-3257.2021.02.026.
[25]
GUAN Y, SHI H, CHEN Y, et al. Whole-lesion histogram analysis of apparent diffusion coefficient for the assessment of cervical cancer[J]. J Comput Assist Tomogr, 2016, 40(2): 212-217. DOI: 10.1097/RCT.0000000000000349.
[26]
LEE J, KIM C K, PARK S Y. Histogram analysis of apparent diffusion coefficients for predicting pelvic lymph node metastasis in patients with uterine cervical cancer[J]. MAGMA, 2020, 33(2): 283-292. DOI: 10.1007/s10334-019-00777-9.
[27]
DOWNEY K, RICHES S F, MORGAN V A, et al. Relationship between imaging biomarkers of stage I cervical cancer and poor-prognosis histologic features: quantitative histogram analysis of diffusion-weighted MR images[J]. AJR Am J Roentgenol, 2013, 200(2): 314-320. DOI: 10.2214/AJR.12.9545.
[28]
LIN Y N, LI H, CHEN Z Q, et al. Correlation of histogram analysis of apparent diffusion coefficient with uterine cervical pathologic finding[J]. AJR Am J Roentgenol, 2015, 204(5): 1125-1131. DOI: 10.2214/AJR.14.13350.
[29]
LIN B J, WU Z X, WANG S, et al. Intratumoral and peritumoral magnetic resonance imaging radiomics combined with clinical characteristics to predict lymphovascular space invasion in cervical cancer[J]. Chin J Med Phys, 2024, 41(7): 851-857. DOI: 10.3969/j.issn.1005-202X.2024.07.010.
[30]
DU L Z, YUAN Q H, ZHANG M D, et al. Using amide proton transfer-weighted magnetic resonance imaging (MRI) in peritumor tissue to predict parametrial infiltration of cervical cancer: a case-control study[J]. Quant Imaging Med Surg, 2024, 14(8): 5803-5813. DOI: 10.21037/qims-24-412.
[31]
XU Q, GUO C Y, XIA Y W, et al. Preoperative prediction of parametrial invasion of stage ⅠB~ⅡB cervical cancer by intratumoural and peritumoural MRI radiomics[J]. J Mol Imag, 2024, 47(9): 913-920. DOI: 10.12122/j.issn.1674-4500.2024.09.03.

PREV Study on the clinical value of assessing prostate cancer aggressiveness and prognosis based on multi-parameter MRI radiomics cluster analysis
NEXT A study on the correlation between patellofemoral and tibiofemoral osteoarthritis based on multimodal imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn