Share:
Share this content in WeChat
X
Clinical Article
Preliminary study on analyzing inflammatory activity in axial spondyloarthritis using DCE-MRI-based multiparametric radiomics models​
LIN Jinru  SU Yun  NURABDULLA·Yiming   WANG Shuntao  YUSUFUKARE·Keyimu   JING Jun  YANG Zehong 

Cite this article as: LIN J R, SU Y, NURABDULLA·Y M, et al. Preliminary study on analyzing inflammatory activity in axial spondyloarthritis using DCE-MRI-based multiparametric radiomics models​[J]. Chin J Magn Reson Imaging, 2025, 16(9): 146-152. DOI:10.12015/issn.1674-8034.2025.09.022.


[Abstract] Objective To explore dynamic contrast-enhanced MRI (DCE-MRI) multi-parametric and radiomics data in constructing an evaluation model for inflammatory activity in axial spondyloarthritis, providing a reference for clinical diagnosis and treatment.Materials and Methods This study enrolled 93 patients clinically diagnosed with axial spondyloarthritis, who were classified into the active and inactive inflammatory groups based on the Ankylosing Spondylitis Disease Activity Score (ASDAS). All participants underwent DCE-MRI scans of the sacroiliac joints. The Omni-Kinetics post-processing software was utilized to measure quantitative permeability parameters, quantitative perfusion parameters, and semi-quantitative parameters in the region of interest (ROI) of the sacroiliac joints. ITK-SNAP software delineated three-dimensional volume of interest (VOI) encompassing the bilateral sacral and iliac bone surfaces. Radiomic features were extracted from these VOIs utilizing the Artificial Intelligent Kit (A.K.) software. Subsequently, predictive models for different levels of axial spondyloarthritis inflammatory activity were constructed employing cross-validation and the least absolute shrinkage and selection operator (LASSO) method. These models included the Spondyloarthritis Research Consortium of Canada (SPARCC) scoring model, DCE-MRI multi-parameter combined model, and DCE-MRI radiomics integrated model. The models were validated through receiver operating characteristic (ROC) curve analysis, with their performance evaluated based on the area under the curve (AUC), accuracy, sensitivity, and specificity.Results (1) The AUC (95% CI) for SPARCC was 0.697 (0.589 to 0.805). (2) Among DCE-MRI parameters, efflux rate constant (Kep), time to peak (TTP), and extravascular extracellular volume fraction (Ve) showed significant differences (P < 0.05 by t-test or U-test), with AUCs (95% CI) of 0.628 (0.505 to 0.751), 0.648 (0.535 to 0.761), and 0.630 (0.511 to 0.749), respectively. The combined DCE-MRI parameter model achieved an AUC of 0.712 (0.600 to 0.823). (3) Radiomics features of DCE demonstrated AUCs (95% CI) ranging from 0.617 (0.489 to 0.746) to 0.889 (0.826 to 0.953), with the DCE-MRI combined radiomics model achieving an AUC of 0.951 (0.910 to 0.992). (4) The DCE-MRI radiomics integrated model's diagnostic performance was superior to the DCE-MRI multi-parameter combined model and SPARCC scoring model (AUC: 0.951 vs. 0.712; 0.951 vs. 0.697; both P < 0.001).Conclusions The DCE-MRI radiomics integrated model demonstrated significantly better performance than the DCE-MRI multi-parameter combined model and the SPARCC scoring model in assessing inflammatory activity in axial spondyloarthritis, providing a novel reference for its clinical management.
[Keywords] axial spondyloarthritis;dynamic contrast-enhanced magnetic resonance imaging;radiomics;inflammatory activity;ankylosing spondylitis disease activity score

LIN Jinru1   SU Yun2   NURABDULLA·Yiming 2   WANG Shuntao1   YUSUFUKARE·Keyimu 2   JING Jun3   YANG Zehong2*  

1 Department of Radiology, Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei 516600, China

2 Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China

3 Department of Rheumatology, Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei 516600, China

Corresponding author: YANG Z H, E-mail: yangzeh2@mail.sysu.edu.cn

Conflicts of interest   None.

Received  2025-06-11
Accepted  2025-09-10
DOI: 10.12015/issn.1674-8034.2025.09.022
Cite this article as: LIN J R, SU Y, NURABDULLA·Y M, et al. Preliminary study on analyzing inflammatory activity in axial spondyloarthritis using DCE-MRI-based multiparametric radiomics models​[J]. Chin J Magn Reson Imaging, 2025, 16(9): 146-152. DOI:10.12015/issn.1674-8034.2025.09.022.

[1]
BITTAR M, DEODHAR A. Axial spondyloarthritis: A review[J]. JAMA, 2025, 333(5): 408-420. DOI: 10.1001/jama.2024.20917.
[2]
BITTAR M, DEODHAR A. A critical view of WHO guidelines on management of low back pain[J]. Nat Rev Rheumatol, 2024, 20(4): 201-202. DOI: 10.1038/s41584-024-01088-7.
[3]
XIN P, WANG Q, YAN R, et al. Assessment of axial spondyloarthritis activity using a magnetic resonance imaging-based multi-region-of-interest fusion model[J/OL]. Arthritis Res Ther, 2023, 25(1): 227 [2025-08-28]. https://pubmed.ncbi.nlm.nih.gov/38001465/. DOI: 10.1186/s13075-023-03193-6.
[4]
WIĄK-WALEROWICZ K, WIELOSZ E. Comparison of Ankylosing Spondylitis Disease Activity Score and Bath Ankylosing Spondylitis Disease Activity Index tools in assessment of axial spondyloarthritis activity[J]. Reumatologia, 2024, 62(1): 64-69. DOI: 10.5114/reum/185429.
[5]
RAMIRO S, NIKIPHOROU E, SEPRIANO A, et al. ASAS-EULAR recommendations for the management of axial spondyloarthritis: 2022 update[J]. Ann Rheum Dis, 2023, 82(1): 19-34. DOI: 10.1136/ard-2022-223296.
[6]
MARONA J, SEPRIANO A, RODRIGUES-MANICA S, et al. Eligibility criteria for biologic disease-modifying antirheumatic drugs in axial spondyloarthritis: going beyond BASDAI[J/OL]. RMD Open, 2020, 6(1): e001145 [2025-08-28]. https://pubmed.ncbi.nlm.nih.gov/32144137/. DOI: 10.1136/rmdopen-2019-001145.
[7]
LI A K, LIANG R J, WU L B, et al. Analysis of ASAS health index and its influencing factors in ankylosing spondylitis: a prospective study based on the population of Chaoshan region[J/OL]. Front Med (Lausanne), 2025, 11: 1499798 [2025-08-28]. https://pubmed.ncbi.nlm.nih.gov/39845817/. DOI: 10.3389/fmed.2024.1499798.
[8]
MAKSYMOWYCH W, HADSBJERG A E F E F, ØSTERGAARD M, et al. Validation of SPARCC MRI-RETIC e-tools for increasing scoring proficiency of MRI sacroiliac joint lesions in axial spondyloarthritis[J/OL]. RMD Open, 2024, 10(1): e003923 [2025-08-28]. https://pubmed.ncbi.nlm.nih.gov/38351052/. DOI: 10.1136/rmdopen-2023-003923.
[9]
WU H J, ZHANG G F, SHI L, et al. Axial spondyloarthritis: dual-energy virtual noncalcium CT in the detection of bone marrow edema in the sacroiliac joints[J]. Radiology, 2019, 290(1): 157-164. DOI: 10.1148/radiol.2018181168.
[10]
ZHU L, CHEN P, SUN X, et al. Musculoskeletal ultrasound for ankylosing spondylitis: a systematic review and meta-analysis[J/OL]. Medicine (Baltimore), 2021, 100(18): e25822 [2025-08-28]. https://pubmed.ncbi.nlm.nih.gov/33950988/. DOI: 10.1097/md.0000000000025822.
[11]
BASRA M, PATEL H, SOBCZAK A, et al. Use of multimodality imaging in the evaluation of patients with spondyloarthropathies and sacroiliitis[J/OL]. Cureus, 2024, 16(3): e57185 [2025-08-28]. https://pubmed.ncbi.nlm.nih.gov/38681346/. DOI: 10.7759/cureus.57185.
[12]
ESHED I, HERMANN K G A. Imaging in clinical trials of axial spondyloarthritis: what type of imaging should be used[J/OL]. Skeletal Radiol, 2025[2025-08-28]. https://pubmed.ncbi.nlm.nih.gov/40347246/. DOI: 10.1007/s00256-025-04935-0.
[13]
WANG J, ZHOU S G. Clinical application of MR diffusion weighted imaging, dynamic contrast enhanced MRI and fat quantification for evaluation of sacroiliac joints in ankylosing spondylitis active lesions[J]. Radiol Pract, 2023, 38(5): 610-614. DOI: 10.13609/j.cnki.1000-0313.2023.05.014.
[14]
YE L S, MIAO S L, XIAO Q Q, et al. A predictive clinical-radiomics nomogram for diagnosing of axial spondyloarthritis using MRI and clinical risk factors[J]. Rheumatology (Oxford), 2022, 61(4): 1440-1447. DOI: 10.1093/rheumatology/keab542.
[15]
TENÓRIO A P M, FERREIRA-JUNIOR J R, DALTO V F, et al. Radiomic quantification for MRI assessment of sacroiliac joints of patients with spondyloarthritis[J]. J Digit Imaging, 2022, 35(1): 29-38. DOI: 10.1007/s10278-021-00559-7.
[16]
KEPP F H, HUBER F A, WURNIG M C, et al. Differentiation of inflammatory from degenerative changes in the sacroiliac joints by machine learning supported texture analysis[J/OL]. Eur J Radiol, 2021, 140: 109755 [2025-08-28]. https://pubmed.ncbi.nlm.nih.gov/33989966/. DOI: 10.1016/j.ejrad.2021.109755.
[17]
ZHANG M C, ZHOU L, HUANG N, et al. Assessment of active and inactive sacroiliitis in patients with ankylosing spondylitis using quantitative dynamic contrast-enhanced MRI[J]. J Magn Reson Imaging, 2017, 46(1): 71-78. DOI: 10.1002/jmri.25559.
[18]
PANWAR J, TSE S M L, LIM L, et al. Spondyloarthritis research consortium of Canada scoring system for sacroiliitis in juvenile spondyloarthritis/enthesitis-related arthritis: a reliability, validity, and responsiveness study[J]. J Rheumatol, 2019, 46(6): 636-644. DOI: 10.3899/jrheum.180222.
[19]
ZWANENBURG A, VALLIÈRES M, ABDALAH M A, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping[J]. Radiology, 2020, 295(2): 328-338. DOI: 10.1148/radiol.2020191145.
[20]
LU C C, HUANG G S, LEE T S, et al. MRI contributes to accurate and early diagnosis of non-radiographic HLA-B27 negative axial spondyloarthritis[J/OL]. J Transl Med, 2021, 19(1): 298 [2025-08-28]. https://pubmed.ncbi.nlm.nih.gov/34243762/. DOI: 10.1186/s12967-021-02959-3.
[21]
DAI S M, BAO C D, ZOU H J, et al. Expert consensus on diagnosing and evaluating sacroiliitis using magnetic resonance imaging[J]. J Intern Med Concepts Pract, 2023, 18(2): 65-69. DOI: 10.16138/j.1673-6087.2023.02.001.
[22]
LIU C R, LI W J, ZHU Y F, et al. MRI features of sacroiliac joint bone marrow fat-saturated T2WI high signal in osteitis condensans ilii[J]. Chin J Magn Reson Imag, 2023, 14(6): 52-58. DOI: 10.12015/issn.1674-8034.2023.06.008.
[23]
WANG D M, LIN L, PENG J H, et al. Pannus inflammation in sacroiliitis following immune pathological injury and radiological structural damage: a study of 193 patients with spondyloarthritis[J/OL]. Arthritis Res Ther, 2018, 20(1): 120 [2025-08-28]. https://pubmed.ncbi.nlm.nih.gov/29884210/. DOI: 10.1186/s13075-018-1594-z.
[24]
YANG H, JIANG L, LI J, et al. Quantitative DCE-MRI: an efficient diagnostic technique for evaluating early micro-environment permeability changes in ankylosing spondylitis[J/OL]. BMC Musculoskelet Disord, 2020, 21(1): 774 [2025-08-28]. https://pubmed.ncbi.nlm.nih.gov/33234145/. DOI: 10.1186/s12891-020-03805-1.
[25]
LIN M G, CHEN X Y, YU S, et al. Quantitative evaluation of sacroiliac arthritis activity in SpA based on DCE-MRI microvascular permeability parameters[J]. Chin J Magn Reson Imag, 2021, 12(4): 39-44. DOI: 10.12015/issn.1674-8034.2021.04.008.
[26]
ZHU J, ZHANG F, ZHOU J, et al. Assessment of therapeutic response in Crohn's disease using quantitative dynamic contrast enhanced MRI (DCE-MRI) parameters: a preliminary study[J/OL]. Medicine (Baltimore), 2017, 96(32): e7759 [2025-08-28]. https://pubmed.ncbi.nlm.nih.gov/28796069/. DOI: 10.1097/md.0000000000007759.
[27]
WU Y C, XIAO Z B, LIN X H, et al. Dynamic contrast-enhanced magnetic resonance imaging and diffusion-weighted imaging in the activity staging of terminal ileum Crohn's disease[J]. World J Gastroenterol, 2020, 26(39): 6057-6073. DOI: 10.3748/wjg.v26.i39.6057.
[28]
JOSEPH C R. Novel MRI techniques identifying vascular leak and paravascular flow reduction in early Alzheimer disease[J/OL]. Biomedicines, 2020, 8(7): E228 [2025-08-28]. https://pubmed.ncbi.nlm.nih.gov/32698354/. DOI: 10.3390/biomedicines8070228.
[29]
LUO J W, ZHOU K P, ZHANG B, et al. Intravoxel incoherent motion diffusion-weighted imaging for evaluation of the cell density and angiogenesis of cirrhosis-related nodules in an experimental rat model: comparison and correlation with dynamic contrast-enhanced MRI[J]. J Magn Reson Imaging, 2020, 51(3): 812-823. DOI: 10.1002/jmri.26845.

PREV A study on the correlation between patellofemoral and tibiofemoral osteoarthritis based on multimodal imaging
NEXT Experimental study on evaluation of the hippocampal injury during early brain injury after subarachnoid hemorrhage in rats using magnetic resonance imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn