Share:
Share this content in WeChat
X
Original Article
Experimental study on evaluation of the hippocampal injury during early brain injury after subarachnoid hemorrhage in rats using magnetic resonance imaging
ZHANG Xiao  WANG Kai  JIANG Liping  LI Zhe  QIN Lei 

Cite this article as: ZHANG X, WANG K, JIANG L P, et al. Experimental study on evaluation of the hippocampal injury during early brain injury after subarachnoid hemorrhage in rats using magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2025, 16(9): 153-161, 168. DOI:10.12015/issn.1674-8034.2025.09.023.


[Abstract] Objective To evaluate the hippocampal injury at different time points during early brain injury (EBI) period following the induction of a subarachnoid hemorrhage (SAH) model in rats.Materials and Methods From January to December 2023, 72 Sprague-Dawley (SD) rats were divided into a Sham operation group (Sham) (36 rats) and a SAH group (36 rats). Each group was further divided into six subgroups based on postoperative time points of 3, 6, 12, 24, 48, and 72 hours (6 rats per subgroup). The SAH model was established using the twice cisterna magna blood injection method, with the Sham group receiving an equal volume of normal saline instead of blood. After modeling, whole-brain MRI scanning was performed at each time point to measure the apparent diffusion coefficient (ADC) values of the hippocampus. Neurological function was evaluated using the modified Garcia scoring scale. The severity of SAH was evaluated using a conventional grading scale. Hippocampal tissues were subjected to hematoxylin-eosin (HE) staining to observe pathological changes, and the expression level of interleukin-1β (IL-1β) was detected by enzyme-linked immunosorbent assay (ELISA).Results Compared with the Sham group, the hippocampal ADC values in the SAH group showed significant differences at 12 and 24 hours (P < 0.05). Compared with the Sham group, in each SAH group, the neurological function scores of rats were decreased, the SAH severity scores were increased, and the expression of IL-1β was elevated (all P < 0.05). Compared with the Sham group, the expression of IL-1β in rats of each SAH group was elevated (P < 0.05). Compared with the Sham group, the SAH group exhibited increased neuronal density, cellular crowding, and neuronal degeneration around the pathological lesions. The ADC value of the hippocampus was negatively correlated with the IL-1β protein concentration and the SAH severity score (all P < 0.05, r = -0.695, r = -0.624), and positively correlated with the neurological function score (P < 0.05, r = 0.568); the IL-1β protein concentration was negatively correlated with the neurological function score (P < 0.05, r = -0.419) and positively correlated with the SAH severity score (P < 0.05, r = 0.568); the SAH severity score was negatively correlated with the neurological function score (P < 0.05, r = -0.680).Conclusions During the EBI phase after SAH, the decrease in ADC values of the rat hippocampus, the increase in IL-1β protein concentration, the decrease in neurological function scores and the increase in the SAH severity scores were more pronounced at 12 and 24 hours after SAH modeling. The period of 12 to 24 hours after SAH may be the peak period for hippocampal injury, and the hippocampal ADC values could provide new therapeutic ideas and directions for clinical practice.
[Keywords] subarachnoid hemorrhage;early brain injury;diffusion tensor imaging;magnetic resonance imaging;interleukin-1β;hippocampus

ZHANG Xiao1, 2   WANG Kai1, 2   JIANG Liping2, 3   LI Zhe1, 2   QIN Lei1, 4*  

1 Department of Radiology, the First Affiliated of Bengbu Medical University, Bengbu 233004, China

2 Graduate School of Bengbu Medical University, Bengbu 233004, China

3 Department of Radiology, the Second Affiliated of Bengbu Medical University, Bengbu 233004, China

4 Department of Diagnostic Imaging, School of Medical Imaging, Bengbu Medical University, Bengbu 233004, China

Corresponding author: QIN L, E-mail: 391599298@qq.com

Conflicts of interest   None.

Received  2025-04-28
Accepted  2025-09-02
DOI: 10.12015/issn.1674-8034.2025.09.023
Cite this article as: ZHANG X, WANG K, JIANG L P, et al. Experimental study on evaluation of the hippocampal injury during early brain injury after subarachnoid hemorrhage in rats using magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2025, 16(9): 153-161, 168. DOI:10.12015/issn.1674-8034.2025.09.023.

[1]
ALFONSO M, AFTAB S, HAMADNEH T, et al. Understanding cognitive deficit after subarachnoid hemorrhage: a memory focused approach[J/OL]. Cureus, 2020, 12(11): e11513 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/33354457/. DOI: 10.7759/cureus.11513.
[2]
LIU P, HAN C L, ZHANG T Y, et al. Alterations of oscillatory activity and cognitive function after aneurysmal subarachnoid hemorrhage[J]. Int J Surg, 2025, 111(2): 1919-1928. DOI: 10.1097/JS9.0000000000002190.
[3]
ROST N S, BRODTMANN A, PASE M P, et al. Post-stroke cognitive impairment and dementia[J]. Circ Res, 2022, 130(8): 1252-1271. DOI: 10.1161/CIRCRESAHA.122.319951.
[4]
KANAMARU H, KAWAKITA F, NISHIKAWA H, et al. Clarithromycin ameliorates early brain injury after subarachnoid hemorrhage via suppressing periostin-related pathways in mice[J]. Neurotherapeutics, 2021, 18(3): 1880-1890. DOI: 10.1007/s13311-021-01050-5.
[5]
YANG B S K, GUSDON A M, REN X S, et al. Update on strategies to reduce early brain injury after subarachnoid hemorrhage[J/OL]. Curr Neurol Neurosci Rep, 2024, 25(1): 14 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/39722093/. DOI: 10.1007/s11910-024-01396-1.
[6]
HU J T, CHENG M X, JIANG C G, et al. Deferoxamine mitigates ferroptosis and inflammation in hippocampal neurons after subarachnoid hemorrhage by activating the Nrf2/TXNRD1 axis[J]. Mol Neurobiol, 2024, 61(2): 1044-1060. DOI: 10.1007/s12035-023-03525-2.
[7]
BRUNSER A M, MANSILLA E, NAVIA V, et al. Diffusion-weighted imaging as predictor of acute ischemic stroke etiology[J]. Arq Neuropsiquiatr, 2022, 80(4): 353-359. DOI: 10.1590/0004-282X-ANP-2021-0080.
[8]
LIU Y W, SOPPI V, MUSTONEN T, et al. Subarachnoid hemorrhage in the subacute stage: elevated apparent diffusion coefficient in normal-appearing brain tissue after treatment[J]. Radiology, 2007, 242(2): 518-525. DOI: 10.1148/radiol.2422051698.
[9]
SOLÁR P, ZAMANI A, LAKATOSOVÁ K, et al. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments[J/OL]. Fluids Barriers CNS, 2022, 19(1): 29 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/35410231/. DOI: 10.1186/s12987-022-00312-4.
[10]
MICHINAGA S, KOYAMA Y. Pathogenesis of brain edema and investigation into anti-edema drugs[J]. Int J Mol Sci, 2015, 16(5): 9949-9975. DOI: 10.3390/ijms16059949.
[11]
OSTROWSKI R P, COLOHAN A R, ZHANG J H. Molecular mechanisms of early brain injury after subarachnoid hemorrhage[J]. Neurol Res, 2006, 28(4): 399-414. DOI: 10.1179/016164106X115008.
[12]
ROWLAND M J, GARRY P, EZRA M, et al. Early brain injury and cognitive impairment after aneurysmal subarachnoid haemorrhage[J/OL]. Sci Rep, 2021, 11(1): 23245 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/34853362/. DOI: 10.1038/s41598-021-02539-x.
[13]
HOFMANN B B, DONALDSON D M, NEYAZI M, et al. Clinical outcome prediction of early brain injury in aneurysmal subarachnoid hemorrhage: the SHELTER-score[J]. Neurocrit Care, 2024, 40(2): 438-447. DOI: 10.1007/s12028-023-01879-y.
[14]
STRAGIER H, VANDERSMISSEN H, ORDIES S, et al. Pathophysiological mechanisms underlying early brain injury and delayed cerebral ischemia in the aftermath of aneurysmal subarachnoid hemorrhage: a comprehensive analysis[J/OL]. Front Neurol, 2025, 16: 1587091 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/40488203/. DOI: 10.3389/fneur.2025.1587091.
[15]
BEAULIEU C, BUSCH E, DE CRESPIGNY A, et al. Spreading waves of transient and prolonged decreases in water diffusion after subarachnoid hemorrhage in rats[J]. Magn Reson Med, 2000, 44(1): 110-116. DOI: 10.1002/1522-2594(200007)44:1<110::aid-mrm16>3.0.co;2-n.
[16]
TIEBOSCH I A C W, VAN DEN BERGH W M, BOUTS M J R J, et al. Progression of brain lesions in relation to hyperperfusion from subacute to chronic stages after experimental subarachnoid hemorrhage: a multiparametric MRI study[J]. Cerebrovasc Dis, 2013, 36(3): 167-172. DOI: 10.1159/000352048.
[17]
WEIMER J M, JONES S E, FRONTERA J A. Acute cytotoxic and vasogenic edema after subarachnoid hemorrhage: a quantitative MRI study[J]. AJNR Am J Neuroradiol, 2017, 38(5): 928-934. DOI: 10.3174/ajnr.A5181.
[18]
CHEN F X, CAI J W, DAI L S, et al. Altered hippocampal functional connectivity after the rupture of anterior communicating artery aneurysm[J/OL]. Front Aging Neurosci, 2022, 14: 997231 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/36420312/. DOI: 10.3389/fnagi.2022.997231.
[19]
LI X P, ZENG L, LU X Z, et al. Early brain injury and neuroprotective treatment after aneurysmal subarachnoid hemorrhage: a literature review[J/OL]. Brain Sci, 2023, 13(7): 1083 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/37509013/. DOI: 10.3390/brainsci13071083.
[20]
TSO M K, MACDONALD R L. Subarachnoid hemorrhage: a review of experimental studies on the microcirculation and the neurovascular unit[J]. Transl Stroke Res, 2014, 5(2): 174-189. DOI: 10.1007/s12975-014-0323-4.
[21]
LLULL L, SANTANA D, MOSTEIRO A, et al. Blood-brain barrier disruption predicts poor outcome in subarachnoid hemorrhage: a dynamic contrast-enhanced MRI study[J]. Stroke, 2025, 56(9): 2633-2643. DOI: 10.1161/STROKEAHA.125.051455.
[22]
ZHU K Y, BI S J, ZHU Z C, et al. Edaravone dexborneol attenuates oxidative stress in experimental subarachnoid hemorrhage via Keap1/Nrf2 signaling pathway[J/OL]. Front Pharmacol, 2024, 15: 1342226 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/38873422/. DOI: 10.3389/fphar.2024.1342226.
[23]
SHISHIDO H, EGASHIRA Y, OKUBO S, et al. A magnetic resonance imaging grading system for subarachnoid hemorrhage severity in a rat model[J/OL]. J Neurosci Meth, 2015, 243: 115-119 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/25677406/. DOI: 10.1016/j.jneumeth.2015.01.035.
[24]
KANG J L, TIAN S L, ZHANG L, et al. Ferroptosis in early brain injury after subarachnoid hemorrhage: review of literature[J/OL]. Chin Neurosurg J, 2024, 10(1): 6 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/38347652/. DOI: 10.1186/s41016-024-00357-4.
[25]
CORRIGAN F, MANDER K A, LEONARD A V, et al. Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation[J/OL]. J Neuroinflammation, 2016, 13(1): 264 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/27724914/. DOI: 10.1186/s12974-016-0738-9.
[26]
KIM J H, MICHIKO N, CHOI I S, et al. Aberrant activation of hippocampal astrocytes causes neuroinflammation and cognitive decline in mice[J/OL]. PLoS Biol, 2024, 22(7): e3002687 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/38991663/. DOI: 10.1371/journal.pbio.3002687.
[27]
YANG L, WU J P, ZHANG F, et al. Microglia aggravate white matter injury via C3/C3aR pathway after experimental subarachnoid hemorrhage[J/OL]. Exp Neurol, 2024, 379: 114853 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/38866102/. DOI: 10.1016/j.expneurol.2024.114853.
[28]
ALSBROOK D L, DI NAPOLI M, BHATIA K, et al. Neuroinflammation in acute ischemic and hemorrhagic stroke[J]. Curr Neurol Neurosci Rep, 2023, 23(8): 407-431. DOI: 10.1007/s11910-023-01282-2.
[29]
SOZEN T, TSUCHIYAMA R, HASEGAWA Y, et al. Role of interleukin-1beta in early brain injury after subarachnoid hemorrhage in mice[J]. Stroke, 2009, 40(7): 2519-2525. DOI: 10.1161/STROKEAHA.109.549592.
[30]
LIANG Z J, YUAN Y, LI J Y, et al. Characteristics of early brain injury and inflammatory response in rats after subarachnoid hemorrhage[J]. J China Med Univ, 2020, 49(1): 62-66. DOI: 10.12007/j.issn.0258-4646.2020.01.014.
[31]
XU P F, TAO C R, ZHU Y Y, et al. TAK1 mediates neuronal pyroptosis in early brain injury after subarachnoid hemorrhage[J/OL]. J Neuroinflammation, 2021, 18(1): 188 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/34461942/. DOI: 10.1186/s12974-021-02226-8.
[32]
LI F, ZHANG W F, WANG M, et al. The effect and clinical implications of IL-1β on the development of aneurysmal subarachnoid hemorrhage[J/OL]. Clin Lab, 2024, 70(11) [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/39506594/. DOI: 10.7754/Clin.Lab.2024.240608.
[33]
ZHANG J, NIE Y, PANG Q N, et al. Effects of stellate ganglion block on early brain injury in patients with subarachnoid hemorrhage: a randomised control trial[J/OL]. BMC Anesthesiol, 2021, 21(1): 23 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/33472582/. DOI: 10.1186/s12871-020-01215-3.
[34]
KAJIMOTO R, IGARASHI T, MORO N, et al. Glibenclamide reduces secondary brain injury in a SAH rat model by reducing brain swelling and modulating inflammatory response[J]. J Neurosurg Sci, 2023, 67(4): 431-438. DOI: 10.23736/S0390-5616.22.05271-7.
[35]
ZHENG Y H, TANG W W, ZENG H H, et al. Probenecid-blocked pannexin-1 channel protects against early brain injury via inhibiting neuronal AIM2 inflammasome activation after subarachnoid hemorrhage[J/OL]. Front Neurol, 2022, 13: 854671 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/35401398/. DOI: 10.3389/fneur.2022.854671.
[36]
AGGARWAL V, SHARMA A, SINHA V D. Role of diffusion-weighted imaging in detecting early ischemic brain injury following aneurysmal subarachnoid hemorrhage[J]. Asian J Neurosurg, 2018, 13(4): 1074-1077. DOI: 10.4103/ajns.AJNS_73_17.
[37]
ROBERTS T P L, ROWLEY H A. Diffusion weighted magnetic resonance imaging in stroke[J]. Eur J Radiol, 2003, 45(3): 185-194. DOI: 10.1016/s0720-048x(02)00305-4.
[38]
BUSCH E, BEAULIEU C, DE CRESPIGNY A, et al. Diffusion MR imaging during acute subarachnoid hemorrhage in rats[J]. Stroke, 1998, 29(10): 2155-2161. DOI: 10.1161/01.str.29.10.2155.
[39]
SUN Y, SHEN Q, WATTS L T, et al. Multimodal MRI characterization of experimental subarachnoid hemorrhage[J/OL]. Neuroscience, 2016, 316: 53-62 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/26708744/. DOI: 10.1016/j.neuroscience.2015.12.027.
[40]
JADHAV V, SUGAWARA T, ZHANG J, et al. Magnetic resonance imaging detects and predicts early brain injury after subarachnoid hemorrhage in a canine experimental model[J]. J Neurotrauma, 2008, 25(9): 1099-1106. DOI: 10.1089/neu.2008.0518.
[41]
HAN S M, WAN H, KUDO G, et al. Molecular alterations in the hippocampus after experimental subarachnoid hemorrhage[J]. J Cereb Blood Flow Metab, 2014, 34(1): 108-117. DOI: 10.1038/jcbfm.2013.170.
[42]
SABRI M, AI J, LAKOVIC K, et al. Mechanisms of microthrombi formation after experimental subarachnoid hemorrhage[J/OL]. Neuroscience, 2012, 224: 26-37 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/22902542/. DOI: 10.1016/j.neuroscience.2012.08.002.
[43]
YAMADA H, KASE Y, OKANO Y, et al. Subarachnoid hemorrhage triggers neuroinflammation of the entire cerebral cortex, leading to neuronal cell death[J/OL]. Inflamm Regen, 2022, 42(1): 61 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/36514181/. DOI: 10.1186/s41232-022-00236-4.
[44]
CHANDRA S, SHARMA S, CHAUDHURI R, et al. Episodic and associative memory from spatial scaffolds in the hippocampus[J]. Nature, 2025, 638(8051): 739-751. DOI: 10.1038/s41586-024-08392-y.
[45]
CHEN P, LIN M H, LI Y X, et al. Bexarotene enhances astrocyte phagocytosis via ABCA1-mediated pathways in a mouse model of subarachnoid hemorrhage[J/OL]. Exp Neurol, 2022, 358: 114228 [2025-04-27]. https://pubmed.ncbi.nlm.nih.gov/36108713/. DOI: 10.1016/j.expneurol.2022.114228.
[46]
COULIBALY A P, PROVENCIO J J. Aneurysmal subarachnoid hemorrhage: an overview of inflammation-induced cellular changes[J]. Neurotherapeutics, 2020, 17(2): 436-445. DOI: 10.1007/s13311-019-00829-x.
[47]
ØSTERGAARD L, AAMAND R, KARABEGOVIC S, et al. The role of the microcirculation in delayed cerebral ischemia and chronic degenerative changes after subarachnoid hemorrhage[J]. J Cereb Blood Flow Metab, 2013, 33(12): 1825-1837. DOI: 10.1038/jcbfm.2013.173.
[48]
MACDONALD R L. Delayed neurological deterioration after subarachnoid haemorrhage[J]. Nat Rev Neurol, 2014, 10(1): 44-58. DOI: 10.1038/nrneurol.2013.246.

PREV Preliminary study on analyzing inflammatory activity in axial spondyloarthritis using DCE-MRI-based multiparametric radiomics models​
NEXT A preliminary study on improving liver dynamic contrast-enhanced MRI quality in patients with poor breath-holding using the optimized compressed sensing golden-angle radial sparse parallel sampling sequence
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn