Share:
Share this content in WeChat
X
Review
Research progress of magnetic resonance imaging in thalamus of major depressive disorder
NING Hongyu  LIU Yuwei  QIAO Linjun  XU Lumeng  LI Minglong  LI Xianglin 

Cite this article as: NING H Y, LIU Y W, QIAO L J, et al. Research progress of magnetic resonance imaging in thalamus of major depressive disorder[J]. Chin J Magn Reson Imaging, 2025, 16(9): 174-180. DOI:10.12015/issn.1674-8034.2025.09.026.


[Abstract] Major depressive disorder (MDD) is a prevalent and disabling mental disorder, ranking among the top ten contributors to worldwide disease burden. The thalamus, serving as a critical neural relay hub and integration center, plays a pivotal role in emotional regulation, cognitive processing, and neural network connectivity. Elucidating the neurobiological underpinnings of MDD and developing more targeted therapeutic interventions have important clinical significance. Recent advances in magnetic resonance imaging (MRI) technology have enabled comprehensive characterization of thalamic abnormalities in MDD patients across structural, functional, and metabolic. These neuroimaging approaches have emerged as indispensable tools for investigating the neural substrates of MDD pathophysiology.Therefore, this review systematically examines studies that employ various MRI techniques to investigate thalamic abnormalities in MDD, analyzing the shortcomings of current techniques. It aims to elucidate the underlying neuropathological mechanisms and advance clinical applications in diagnosis, treatment, and prognosis, while also offering new perspectives for future research and clinical practice.
[Keywords] major depressive disorder;thalamus;magnetic resonance imaging;structural magnetic resonance imaging;functional magnetic resonance imaging;magnetic resonance spectroscopy

NING Hongyu   LIU Yuwei   QIAO Linjun   XU Lumeng   LI Minglong   LI Xianglin*  

School of Medical Imaging, Binzhou Medical University, Yantai 264003, China

Corresponding author: LI X L, E-mail: xlli@bzmc.edu.cn

Conflicts of interest   None.

Received  2025-06-11
Accepted  2025-09-03
DOI: 10.12015/issn.1674-8034.2025.09.026
Cite this article as: NING H Y, LIU Y W, QIAO L J, et al. Research progress of magnetic resonance imaging in thalamus of major depressive disorder[J]. Chin J Magn Reson Imaging, 2025, 16(9): 174-180. DOI:10.12015/issn.1674-8034.2025.09.026.

[1]
GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet Psychiatry, 2022, 9(2): 137-150. DOI: 10.1016/s2215-0366(21)00395-3.
[2]
ZHAO C, YANG R X, GU X, et al. Research progress on hippocampal magnetic resonance imaging in patients with first-episode of depressive disorder[J]. Neuroscience and Mental Health, 2024, 24(12): 896-900. DOI: 10.3969/j.issn.1009-6574.2024.12.010.
[3]
VOS T, LIM S S, ABBAFATI C, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396(10258): 1204-1222. DOI: 10.1016/s0140-6736(20)30925-9.
[4]
LI L L, ZHANG J, LUO B Y. Role of thalamic subregions and related circuits in consciousness processing and regulation[J]. Clinical Research and Practice, 2022, 7(26): 190-193, 198. DOI: 10.19347/j.cnki.2096-1413.202226054.
[5]
MARCUSE L V, LANGAN M, HOF P R, et al. The thalamus: Structure, function, and neurotherapeutics[J/OL]. Neurotherapeutics, 2025, 22(2): e00550 [2025-06-11]. http://doi.org/10.1016/j.neurot.2025.e00550. DOI: 10.1016/j.neurot.2025.e00550.
[6]
CASSEL J C, PEREIRA D E VASCONCELOS A. Routes of the thalamus through the history of neuroanatomy[J]. Neurosci Biobehav Rev, 2021, 125: 442-465. DOI: 10.1016/j.neubiorev.2021.03.001.
[7]
KANG W, SHIN J H, HAN K M, et al. Local shape volume alterations in subcortical structures of suicide attempters with major depressive disorder[J]. Hum Brain Mapp, 2020, 41(17): 4925-4934. DOI: 10.1002/hbm.25168.
[8]
PETERS S K, DUNLOP K, DOWNAR J. Cortico-Striatal-Thalamic Loop Circuits of the Salience Network: A Central Pathway in Psychiatric Disease and Treatment[J/OL]. Front Syst Neurosci, 2016, 10: 104 [2025-06-11]. http://doi.org/10.3389/fnsys.2016.00104. DOI: 10.3389/fnsys.2016.00104.
[9]
ZACKOVÁ L, JÁNI M, BRÁZDIL M, et al. Cognitive impairment and depression: Meta-analysis of structural magnetic resonance imaging studies[J/OL]. NeuroImage Clin, 2021, 32: 102830 [2025-06-11]. http://doi.org/10.1016/j.nicl.2021.102830. DOI: 10.1016/j.nicl.2021.102830.
[10]
DONG Y S, YU J B, SHANG Z Q, et al. Correlations among changes in gray matter volume, sleep quality and cognitive function in patients with depression[J]. Psychiatry, 2023, 36(4): 366-370. DOI: 10.3969/j.issn.2095-9346.2023.04.007.
[11]
LIU P H, LI Y, ZHANG A X, et al. Brain structural alterations in MDD patients with gastrointestinal symptoms: Evidence from the REST-meta-MDD project[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2021, 111: 110386 [2025-06-11]. http://doi.org/10.1016/j.pnpbp.2021.110386. DOI: 10.1016/j.pnpbp.2021.110386.
[12]
ZHANG B, WU B, ZHANG X, et al. Gray matter structural alterations in first-episode drug-naïve adolescents with major depressive disorder: a comprehensive morphological analysis study[J/OL]. Psychol Med, 2025, 55: e113 [2025-06-11]. http://doi.org/10.1017/s0033291725000790. DOI: 10.1017/s0033291725000790.
[13]
SEGOBIN S, HAAST R A M, KUMAR V J, et al. A roadmap towards standardized neuroimaging approaches for human thalamic nuclei[J]. Nat Rev Neurosci, 2024, 25(12): 792-808. DOI: 10.1038/s41583-024-00867-1.
[14]
CHIBAATAR E, WATANABE K, OKAMOTO N, et al. Volumetric assessment of individual thalamic nuclei in patients with drug-naïve, first-episode major depressive disorder[J/OL]. Front Psychiatry, 2023, 14: 1151551 [2025-06-11]. http://doi.org/10.3389/fpsyt.2023.1151551. DOI: 10.3389/fpsyt.2023.1151551.
[15]
LI H, SONG S, WANG D, et al. Individualized diagnosis of major depressive disorder via multivariate pattern analysis of thalamic sMRI features[J/OL]. BMC Psychiatry, 2021, 21(1): 415 [2025-06-11]. http://doi.org/10.1186/s12888-021-03414-9. DOI: 10.1186/s12888-021-03414-9.
[16]
LIU W, HEIJ J, LIU S, et al. Hippocampal, thalamic, and amygdala subfield morphology in major depressive disorder: an ultra-high resolution MRI study at 7-Tesla[J]. Eur Arch Psychiatry Clin Neurosci, 2025, 275(4): 1113-1129. DOI: 10.1007/s00406-024-01874-0.
[17]
GUO Z P, CHEN L, TANG L R, et al. The differential orbitofrontal activity and connectivity between atypical and typical major depressive disorder[J/OL]. Neuroimage Clin, 2025, 45: 103717 [2025-06-11]. http://doi.org/10.1016/j.nicl.2024.103717. DOI: 10.1016/j.nicl.2024.103717.
[18]
CATTARINUSSI G, DELVECCHIO G, MAGGIONI E, et al. Ultra-high field imaging in Major Depressive Disorder: a review of structural and functional studies[J]. Journal of Affective Disorders, 2021, 290: 65-73. DOI: 10.1016/j.jad.2021.04.056.
[19]
ZHOU C, CUI J, XU X, et al. Shared and Distinct White Matter Alterations in Major Depression and Bipolar Disorder: A Systematic Review and Meta-Analysis[J/OL]. J Integr Neurosci, 2024, 23(9): 170 [2025-06-11]. http://doi.org/10.31083/j.jin2309170. DOI: 10.31083/j.jin2309170.
[20]
ZHANG W, ZHAI X, ZHANG C, et al. Regional brain structural network topology mediates the associations between white matter damage and disease severity in first-episode, Treatment-naïve pubertal children with major depressive disorder[J/OL]. Psychiatry Res Neuroimaging, 2024, 344: 111862 [2025-06-11]. http://doi.org/10.1016/j.pscychresns.2024.111862. DOI: 10.1016/j.pscychresns.2024.111862.
[21]
WEI S, WOMER F Y, EDMISTON E K, et al. Structural alterations associated with suicide attempts in major depressive disorder and bipolar disorder: A diffusion tensor imaging study[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2020, 98: 109827 [2025-06-11]. http://doi.org/10.1016/j.pnpbp.2019.109827. DOI: 10.1016/j.pnpbp.2019.109827.
[22]
BAN M, HE J, WANG D, et al. Association between segmental alterations of white matter bundles and cognitive performance in first-episode, treatment-naïve young adults with major depressive disorder[J]. J Affect Disord, 2024, 358: 309-317. DOI: 10.1016/j.jad.2024.05.001.
[23]
GUO Y, LIU Y, ZHANG T, et al. Intrinsic disruption of white matter microarchitecture in major depressive disorder: A voxel-based meta analysis of diffusion tensor imaging[J]. J Affect Disord, 2024, 363: 161-173. DOI: 10.1016/j.jad.2024.07.050.
[24]
BODA E. Myelin and oligodendrocyte lineage cell dysfunctions: New players in the etiology and treatment of depression and stress-related disorders[J]. Eur J Neurosci, 2021, 53(1): 281-297. DOI: 10.1111/ejn.14621.
[25]
SMAGA I. Understanding the Links among Maternal Diet, Myelination, and Depression: Preclinical and Clinical Overview[J/OL]. Cells, 2022, 11(3): 540 [2025-06-11]. http://doi.org/10.3390/cells11030540. DOI: 10.3390/cells11030540.
[26]
OTA M, NODA T, SATO N, et al. The use of diffusional kurtosis imaging and neurite orientation dispersion and density imaging of the brain in major depressive disorder[J]. J Psychiatr Res, 2018, 98: 22-29. DOI: 10.1016/j.jpsychires.2017.12.011.
[27]
LESKINEN S, SINGHA S, MEHTA N H, et al. Applications of Functional Magnetic Resonance Imaging to the Study of Functional Connectivity and Activation in Neurological Disease: A Scoping Review of the Literature[J]. World Neurosurg, 2024, 189: 185-192. DOI: 10.1016/j.wneu.2024.06.003.
[28]
LI G, MA X, BIAN H, et al. A pilot fMRI study of the effect of stressful factors on the onset of depression in female patients[J]. Brain Imaging and Behavior, 2015, 10(1): 195-202. DOI: 10.1007/s11682-015-9382-8.
[29]
KUSTUBAYEVA A, ELIASSEN J, MATTHEWS G, et al. FMRI study of implicit emotional face processing in patients with MDD with melancholic subtype[J/OL]. Front Hum Neurosci, 2023, 17: 1029789 [2025-06-11]. http://doi.org/10.3389/fnhum.2023.1029789. DOI: 10.3389/fnhum.2023.1029789.
[30]
LI F, ZHENG X, WANG H, et al. Mediodorsal thalamus projection to medial prefrontal cortical mediates social defeat stress-induced depression-like behaviors[J]. Neuropsychopharmacology, 2024, 49(8): 1318-1329. DOI: 10.1038/s41386-024-01829-y.
[31]
CANARIO E, CHEN D, BISWAL B. A review of resting-state fMRI and its use to examine psychiatric disorders[J]. Psychoradiology, 2021, 1(1): 42-53. DOI: 10.1093/psyrad/kkab003.
[32]
YU S, SHU C, WANG G. Abnormal static and dynamic regional homogeneity in adolescent major depressive disorder with somatic symptoms: a resting-state fMRI study[J/OL]. Ann Gen Psychiatry, 2025, 24(1): 41 [2025-06-11]. http://doi.org/10.1186/s12991-025-00581-x. DOI: 10.1186/s12991-025-00581-x.
[33]
WANG X, WU H, WANG D, et al. Reduced suicidality after electroconvulsive therapy is linked to increased frontal brain activity in depressed patients: a resting-state fMRI study[J/OL]. Front Psychiatry, 2023, 14: 1224914 [2025-06-11]. http://doi.org/10.3389/fpsyt.2023.1224914. DOI: 10.3389/fpsyt.2023.1224914.
[34]
SUN J, GAO S, MA Y, et al. A Study of Differential Resting-State Brain Functional Activity in Males and Females with Recurrent Depressive Disorder[J/OL]. Brain Sci, 2022, 12(11): 1508 [2025-06-11]. http://doi.org/10.3390/brainsci12111508. DOI: 10.3390/brainsci12111508.
[35]
LIU S, MA R, LUO Y, et al. Facial Expression Recognition and ReHo Analysis in Major Depressive Disorder[J/OL]. Front Psychol, 2021, 12: 688376 [2025-06-11]. http://doi.org/10.3389/fpsyg.2021.688376. DOI: 10.3389/fpsyg.2021.688376.
[36]
ZHONG M, HOU W, LIU Z, et al. Temporal dynamic changes of intrinsic brain regional activity in depression with smoking[J]. J Affect Disord, 2025, 377: 175-183. DOI: 10.1016/j.jad.2025.02.061.
[37]
TARIQ A, HUSSAIN A U, ALI Y, et al. Alterations in Cerebral Intrinsic Activity in First-Episode, Drug-Naive Patients With Major Depressive Disorder[J/OL]. Cureus, 2025, 17(5): e83737 [2025-06-11]. http://doi.org/10.7759/cureus.83737. DOI: 10.7759/cureus.83737.
[38]
YE G X, XU F, XIONG Y C, et al. Brain functional changes in first-episode major depression disorder: low-frequency fluctuation and regional homogeneity analysis based on resting-state fMRI[J]. Radiol Practice, 2024, 39(2): 164-168. DOI: 10.13609/j.cnki.1000-0313.2024.02.004.
[39]
LIU Y, ZHANG B, ZHOU Y, et al. Plasma oxidative stress marker levels related to functional brain abnormalities in first-episode drug-naive major depressive disorder[J/OL]. Psychiatry Res, 2024, 333: 115742 [2025-06-11]. http://doi.org/10.1016/j.psychres.2024.115742. DOI: 10.1016/j.psychres.2024.115742.
[40]
HU Y X, SHI J Y, XIA G Y, et al. Analysis of functional connectivity changes in attention networks and default mode networks in patients with depression and insomnia[J]. Sleep Breath, 2024, 28(4): 1731-1742. DOI: 10.1007/s11325-024-03064-7.
[41]
CHEN L M, LI M Y, HUANG Y X, et al. A preliminary comparative study on the characteristics of resting-state brain functional networks in patients with comorbid insomnia in first-episode and recurrent depression[J]. Chin J Magn Reson Imaging, 2025, 16(01): 89-94, 110. DOI: 10.12015/issn.1674-8034.2025.01.014.
[42]
ZHENG Y, WU Y, LIU Y, et al. Abnormal dynamic functional connectivity of thalamic subregions in patients with first-episode, drug-naïve major depressive disorder[J/OL]. Front Psychiatry, 2023, 14: 1152332 [2025-06-11]. http://doi.org/10.3389/fpsyt.2023.1152332. DOI: 10.3389/fpsyt.2023.1152332.
[43]
ZHOU B, CHEN Y, ZHENG R, et al. Alterations of Static and Dynamic Functional Connectivity of the Nucleus Accumbens in Patients With Major Depressive Disorder[J/OL]. Front Psychiatry, 2022, 13: 877417 [2025-06-11]. http://doi.org/10.3389/fpsyt.2022.877417. DOI: 10.3389/fpsyt.2022.877417.
[44]
YU T, ZOU Y, NIE H, et al. The role of the thalamic subregions in major depressive disorder with childhood maltreatment: Evidences from dynamic and static functional connectivity[J]. J Affect Disord, 2024, 347: 237-248. DOI: 10.1016/j.jad.2023.11.074.
[45]
LU F, CHEN Y, CUI Q, et al. Shared and distinct patterns of dynamic functional connectivity variability of thalamo-cortical circuit in bipolar depression and major depressive disorder[J]. Cereb Cortex, 2023, 33(11): 6681-6692. DOI: 10.1093/cercor/bhac534.
[46]
SHI Y, LI J, FENG Z, et al. Abnormal functional connectivity strength in first-episode, drug-naïve adult patients with major depressive disorder[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2020, 97: 109759 [2025-06-11]. http://doi.org/10.1016/j.pnpbp.2019.109759. DOI: 10.1016/j.pnpbp.2019.109759.
[47]
DONG Q, LI X, ZHANG Q, et al. Aberrant functional gradient of thalamo-cortical circuitry in major depressive disorder and generalized anxiety disorder[J]. J Affect Disord, 2025, 376: 473-486. DOI: 10.1016/j.jad.2025.02.021.
[48]
WEI Q, BAI T, BROWN E C, et al. Thalamocortical connectivity in electroconvulsive therapy for major depressive disorder[J]. J Affect Disord, 2020, 264: 163-171. DOI: 10.1016/j.jad.2019.11.120.
[49]
GODFREY K, DOUGLASS H, ERRITZOE D, et al. The role of GABA, glutamate, and Glx levels in treatment of major depressive disorder: A systematic review and meta-analysis[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2025, 141: 111455 [2025-06-11]. http://doi.org/10.1016/j.pnpbp.2025.111455. DOI: 10.1016/j.pnpbp.2025.111455.
[50]
HAHN A, BANSAL R, HELLERSTEIN D J, et al. Effects of the antidepressant medication duloxetine on brain metabolites in persistent depressive disorder: A randomized, controlled trial[J/OL]. PloS One, 2019, 14(7): e0219679 [2025-06-11]. http://doi.org/10.1371/journal.pone.0219679. DOI: 10.1371/journal.pone.0219679.
[51]
SARAWAGI A, SONI N D, PATEL A B. Glutamate and GABA Homeostasis and Neurometabolism in Major Depressive Disorder[J/OL]. Front Psychiatry, 2021, 12: 637863 [2025-06-11]. http://doi.org/10.3389/fpsyt.2021.637863. DOI: 10.3389/fpsyt.2021.637863.
[52]
KAHL K G, ATALAY S, MAUDSLEY A A, et al. Altered neurometabolism in major depressive disorder: A whole brain (1)H-magnetic resonance spectroscopic imaging study at 3T[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2020, 101: 109916 [2025-06-11]. http://doi.org/10.1016/j.pnpbp.2020.109916. DOI: 10.1016/j.pnpbp.2020.109916.
[53]
COELHO D R A, TURAL Ü, HURTADO PUERTO A M, et al. Neurometabolite Changes After Transcranial Photobiomodulation in Major Depressive Disorder: A Randomized Controlled Trial Investigating Dose-Dependent Effects[J/OL]. J Clin Med, 2025, 14(10): 3402 [2025-06-11]. http://doi.org/10.3390/jcm14103402. DOI: 10.3390/jcm14103402.
[54]
ZOU Y, WU Y Q, HAN Y J, et al. Application of proton magnetic resonance spectroscopy in metabolic alterations of prefrontal white and gray matter in depression adolescents[J]. World J Psychiatry, 2024, 14(11): 1652-1660. DOI: 10.5498/wjp.v14.i11.1652.
[55]
ZHANG Y, LAI S, WU W, et al. Associations between executive function impairment and biochemical abnormalities in depressed adolescents with non-suicidal self-injury[J]. J Affect Disord, 2022, 298(Pt A): 492-499. DOI: 10.1016/j.jad.2021.10.132.
[56]
YAN S, ZHANG Y, HE X, et al. Sex differences in brain metabolites of unmedicated depressed adolescents with non-suicidal self-injury: a proton magnetic resonance spectroscopy study[J]. J Affect Disord, 2025, 382: 167-175. DOI: 10.1016/j.jad.2025.03.147.
[57]
SACCARO L F, TASSONE M, TOZZI F, et al. Proton magnetic resonance spectroscopy of N-acetyl aspartate in first depressive episode and chronic major depressive disorder: A systematic review and meta-analysis[J]. J Affect Disord, 2024, 355: 265-282. DOI: 10.1016/j.jad.2024.03.150.
[58]
HUANG X, LAI S, LU X, et al. Cognitive dysfunction and neurometabolic alternations in major depressive disorder with gastrointestinal symptoms[J]. J Affect Disord, 2023, 322: 180-186. DOI: 10.1016/j.jad.2022.10.036.
[59]
ZHANG Y, LAI S, ZHANG J, et al. The effectiveness of vortioxetine on neurobiochemical metabolites and cognitive of major depressive disorders patients: A 8-week follow-up study[J]. J Affect Disord, 2024, 351: 799-807. DOI: 10.1016/j.jad.2024.01.272.
[60]
SHEFFIELD Z, PAUL P, KRISHNAKUMAR S, PAN D. Current Strategies and Future Directions of Wearable Biosensors for Measuring Stress Biochemical Markers for Neuropsychiatric Applications[J/OL]. Adv Sci (Weinh), 2025, 12(5): e2411339 [2025-06-11]. http://doi.org/10.1002/advs.202411339. DOI: 10.1002/advs.202411339.
[61]
XIE X, SHI Y, MA L, et al. Altered neurometabolite levels in the brains of patients with depression: A systematic analysis of magnetic resonance spectroscopy studies[J]. J Affect Disord, 2023, 328: 95-102. DOI: 10.1016/j.jad.2022.12.020.
[62]
BI Y, HUANG N, XU D, et al. Manganese exposure leads to depressive-like behavior through disruption of the Gln-Glu-GABA metabolic cycle[J/OL]. J Hazard Mater, 2024, 480: 135808 [2025-06-11]. http://doi.org/10.1016/j.jhazmat.2024.135808. DOI: 10.1016/j.jhazmat.2024.135808.
[63]
RITTER C, BUCHMANN A, MÜLLER S T, et al. Evaluation of Prefrontal γ-Aminobutyric Acid and Glutamate Levels in Individuals With Major Depressive Disorder Using Proton Magnetic Resonance Spectroscopy[J]. JAMA Psychiatry, 2022, 79(12): 1209-1216. DOI: 10.1001/jamapsychiatry.2022.3384.
[64]
ERMIS C, AYDIN B, KUCUKGUCLU S, et al. Association Between Anterior Cingulate Cortex Neurochemical Profile and Clinical Remission After Electroconvulsive Treatment in Major Depressive Disorder: A Longitudinal 1H Magnetic Resonance Spectroscopy Study[J]. J ECT, 2021, 37(4): 263-269. DOI: 10.1097/yct.0000000000000766.
[65]
ZENG Z, DONG Y, ZOU L, et al. GluCEST Imaging and Structural Alterations of the Bilateral Hippocampus in First-Episode and Early-Onset Major Depression Disorder[J]. J Magn Reson Imaging, 2023, 58(5): 1431-1440. DOI: 10.1002/jmri.28651.
[66]
HWANG W J, KWAK Y B, CHO K I K, et al. Thalamic Connectivity System Across Psychiatric Disorders: Current Status and Clinical Implications[J]. Biol Psychiatry Glob Open Sci, 2022, 2(4): 332-340. DOI: 10.1016/j.bpsgos.2021.09.008.

PREV Current status analysis of magnetic resonance imaging equipment in the discipline construction of radiology departments in public hospitals: A case study of Jiangsu province
NEXT Research progress on resting-state functional magnetic resonance imaging in post-stroke depression
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn